- -

Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds

Mostrar el registro completo del ítem

Matrone, F.; Martini, M. (2021). Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds. Virtual Archaeology Review. 12(25):73-84. https://doi.org/10.4995/var.2021.15318

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169359

Ficheros en el ítem

Metadatos del ítem

Título: Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds
Otro titulo: Transferencia de técnicas de aprendizaje y mejora del rendimiento en la segmentación semántica profunda de nubes de puntos del patrimonio construido
Autor: Matrone, Francesca Martini, Massimo
Fecha difusión:
Resumen:
[EN] The growing availability of three-dimensional (3D) data, such as point clouds, coming from Light Detection and Ranging (LiDAR), Mobile Mapping Systems (MMSs) or Unmanned Aerial Vehicles (UAVs), provides the opportunity ...[+]


[ES] La creciente disponibilidad de datos tridimensionales (3D), como nubes de puntos, provenientes de la detección de la luz y distancia (LiDAR), sistemas de mapeado móvil (MMS) o vehículos aéreos no tripulados (UAV), ...[+]
Palabras clave: Cultural heritage , Semantic segmentation , Deep learning , Deep neural networks , Point clouds , Patrimonio cultural , Segmentación semántica , Aprendizaje profundo , Redes neuronales profundas , Nubes de puntos
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Virtual Archaeology Review. (eissn: 1989-9947 )
DOI: 10.4995/var.2021.15318
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/var.2021.15318
Tipo: Artículo

References

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3D semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1534-1543. https://doi.org/10.1109/CVPR.2016.170

Baraldi, L., Cornia, M., Grana, C., & Cucchiara, R. (2018). Aligning text and document illustrations: towards visually explainable digital humanities. In 24th International Conference on Pattern Recognition (ICPR), 1097-1102. IEEE. https://doi.org/10.1109/ICPR.2018.8545064

Bassier, M., Yousefzadeh, M., & Vergauwen, M. (2020). Comparison of 2D and 3D wall reconstruction algorithms from point cloud data for as-built BIM. Journal of Information Technology in Construction (ITcon), 25(11), 173-192. https://doi.org/10.36680/j.itcon.2020.011 [+]
Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3D semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1534-1543. https://doi.org/10.1109/CVPR.2016.170

Baraldi, L., Cornia, M., Grana, C., & Cucchiara, R. (2018). Aligning text and document illustrations: towards visually explainable digital humanities. In 24th International Conference on Pattern Recognition (ICPR), 1097-1102. IEEE. https://doi.org/10.1109/ICPR.2018.8545064

Bassier, M., Yousefzadeh, M., & Vergauwen, M. (2020). Comparison of 2D and 3D wall reconstruction algorithms from point cloud data for as-built BIM. Journal of Information Technology in Construction (ITcon), 25(11), 173-192. https://doi.org/10.36680/j.itcon.2020.011

Boulch, A., Guerry, J., Le Saux, B., & Audebert, N. (2018). SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks. Computers & Graphics, 71, 189-198. https://doi.org/10.1016/j.cag.2017.11.010

Chadwick, J., (2020). Google launches hieroglyphics translator that uses AI to decipher images of Ancient Egyptian script. Available at https://www.dailymail.co.uk/sciencetech/article-8540329/Google-launches-hieroglyphics-translator-uses-AI-decipher-Ancient-Egyptian-script.html Last access 24/11/2020

Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., & James, S. (2020). Machine learning for cultural heritage: a survey. Pattern Recognition Letters, 133, 102-108. https://doi.org/10.1016/j.patrec.2020.02.017

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research, 32(11), 1231-1237. https://doi.org/10.1177/0278364913491297

Grilli, E., & Remondino, F. (2019). Classification of 3D digital heritage. Remote Sensing, 11(7), 847. https://doi.org/10.3390/rs11070847

Grilli, E., & Remondino, F. (2020). Machine learning generalisation across different 3D architectural heritage. ISPRS International Journal of Geo-Information, 9(6), 379. https://doi.org/10.3390/ijgi9060379

Grilli, E., Özdemir, E., & Remondino, F. (2019a). Application Of Machine And Deep Learning Strategies For The Classification Of Heritage Point Clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, 447-454, 2019. https://doi.org/10.5194/isprs-archives-XLII-4-W18-447-2019

Grilli, E., Farella, E. M., Torresani, A., & Remondino, F. (2019b). Geometric features analysis for the classification of cultural heritage point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 541-548, 2019 https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., & Pollefeys, M. (2017). Semantic3d.net: A new large-scale point cloud classification benchmark. arXiv:1704.03847

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778. arXiv:1512.03385

Korc, F., & Förstner, W. (2009). eTRIMS Image Database for interpreting images of man-made scenes. Dept. of Photogrammetry, University of Bonn, Tech. Rep. TR-IGG-P-2009-01.

Landrieu, L., & Simonovsky, M. (2018). Large-scale point cloud semantic segmentation with superpoint graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4558-4567. arXiv:1711.09869

Llamas, J., M Lerones, P., Medina, R., Zalama, E., & Gómez-García-Bermejo, J. (2017). Classification of architectural heritage images using deep learning techniques. Applied Sciences, 7(10), 992. https://doi.org/10.3390/app7100992

Mathias, M., Martinovic, A., Weissenberg, J., Haegler, S., & Van

Gool, L. (2011). Automatic architectural style recognition. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W16, 171-176 3. https://doi.org/10.3390/app7100992

Matrone, F., Grilli, E., Martini, M., Paolanti, M., Pierdicca, R., & Remondino, F. (2020a). Comparing machine and deep learning methods for large 3D heritage semantic segmentation. ISPRS International Journal of Geo-Information, 9(9), 535. https://doi.org/10.3390/ijgi9090535

Matrone, F., Lingua, A., Pierdicca, R., Malinverni, E. S., Paolanti, M., Grilli, E., Remondino, F., Murtiyoso, A., & Landes, T. (2020b). A benchmark for large-scale heritage point cloud semantic segmentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1419-1426. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1419-2020

Murtiyoso, A., & Grussenmeyer, P. (2019a). Automatic heritage building point cloud segmentation and classification using geometrical rules. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 821-827. https://doi.org/10.5194/isprs-archives-XLII-2-W15-821-2019

Murtiyoso, A., & Grussenmeyer, P. (2019b). Point cloud segmentation and semantic annotation aided by GIS data for heritage complexes. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 523-528, 2019. https://doi.org/10.5194/isprs-archives-XLII-2-W9-523-2019

Oses, N., Dornaika, F., & Moujahid, A. (2014). Image-based delineation and classification of built heritage masonry. Remote Sensing, 6(3), 1863-1889. https://doi.org/10.3390/rs6031863

Park, Y., & Guldmann, J. M. (2019). Creating 3D city models with building footprints and LIDAR point cloud classification: A machine learning approach. Computers, Environment and Urban Systems, 75, 76-89. https://doi.org/10.1016/j.compenvurbsys.2019.01.004

Pierdicca, R., Paolanti, M., Matrone, F., Martini, M., Morbidoni, C., Malinverni, E. S. & Lingua, A. M. (2020). Point cloud semantic segmentation using a deep learning framework for cultural heritage. Remote Sensing, 12(6), 1005. https://doi.org/10.3390/rs12061005

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 652-660. arXiv:1612.00593

Sharafi, S., Fouladvand, S., Simpson, I., & Alvarez, J. A. B. (2016). Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran. Journal of Archaeological Science: Reports, 8, 206-215. https://doi.org/10.1016/j.jasrep.2016.06.024

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

Stathopoulou, E. K., & Remondino, F. (2019). Semantic photogrammetry: boosting image-based 3D reconstruction with semantic labeling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2), W9. https://doi.org/10.5194/isprs-archives-XLII-2-W9-685-2019

Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., & Paragios, N. (2012). Parsing facades with shape grammars and reinforcement learning. IEEE transactions on pattern analysis and machine intelligence, 35(7), 1744-1756. https://doi.org/10.1109/TPAMI.2012.252.

Teruggi, S., Grilli, E., Russo, M., Fassi, F., & Remondino, F. (2020). A hierarchical machine learning approach for multi-level and multi-resolution 3D point cloud classification. Remote Sensing, 12(16), 2598. https://doi.org/10.3390/rs12162598

Tyleček, R., & Šára, R. (2013). Spatial pattern templates for recognition of objects with regular structure. In German Conference on Pattern Recognition, Springer, Berlin, Heidelberg, 364-374. https://doi.org/10.1007/978-3-642-40602-7_39

Verschoof-van der Vaart, W. B., & Lambers, K. (2019). Learning to Look at LiDAR: the use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. Journal of Computer Applications in Archaeology, 2(1). https://doi.org/10.5334/jcaa.32

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., &

Solomon, J. M. (2019). Dynamic graph CNN for learning on point clouds. ACM Transactions On Graphics, 38(5), 1-12. arXiv:1801.07829

Weinmann, M., Jutzi, B., Hinz, S., & Mallet, C. (2015). Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 286-304. https://doi.org/10.1016/j.isprsjprs.2015.01.016

Xie, Y., Tian, J., & Zhu, X. X. (2019). Linking points with labels in 3D: a review of point cloud semantic segmentation. arXiv:1908.08854

Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., & Zuo, W. (2017). Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 2272-2281). arXiv:1705.00609 https://doi.org/10.1109/CVPR.2017.107

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem