- -

Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell

Show full item record

Pascual-Ahuir Giner, MD.; Fita-Torró, J.; Proft, MH. (2020). Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. International Journal of Molecular Sciences. 21(21):1-19. https://doi.org/10.3390/ijms21218278

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169418

Files in this item

Item Metadata

Title: Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell
Author: Pascual-Ahuir Giner, María Desamparados Fita-Torró, Josep Proft, Markus Hans
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
[EN] The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on ...[+]
Subjects: Gene expression , Transcriptional activation , Transcriptional memory , Single-cell variability , Reporter assays , Stress adaptation , Transcriptional dynamics
Copyrigths: Reconocimiento (by)
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms21218278
Publisher version: https://doi.org/10.3390/ijms21218278
Project ID:
This work was funded by Ministerio de Ciencia, Innovacion y Universidades, grant number BFU2016-75792-R.
Type: Artículo


Murray, J. I., Whitfield, M. L., Trinklein, N. D., Myers, R. M., Brown, P. O., & Botstein, D. (2004). Diverse and Specific Gene Expression Responses to Stresses in Cultured Human Cells. Molecular Biology of the Cell, 15(5), 2361-2374. doi:10.1091/mbc.e03-11-0799

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

de-Leon, S. B.-T., & Davidson, E. H. (2007). Gene Regulation: Gene Control Network in Development. Annual Review of Biophysics and Biomolecular Structure, 36(1), 191-212. doi:10.1146/annurev.biophys.35.040405.102002 [+]
Murray, J. I., Whitfield, M. L., Trinklein, N. D., Myers, R. M., Brown, P. O., & Botstein, D. (2004). Diverse and Specific Gene Expression Responses to Stresses in Cultured Human Cells. Molecular Biology of the Cell, 15(5), 2361-2374. doi:10.1091/mbc.e03-11-0799

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

de-Leon, S. B.-T., & Davidson, E. H. (2007). Gene Regulation: Gene Control Network in Development. Annual Review of Biophysics and Biomolecular Structure, 36(1), 191-212. doi:10.1146/annurev.biophys.35.040405.102002

Lenstra, T. L., Rodriguez, J., Chen, H., & Larson, D. R. (2016). Transcription Dynamics in Living Cells. Annual Review of Biophysics, 45(1), 25-47. doi:10.1146/annurev-biophys-062215-010838

Coulon, A., Chow, C. C., Singer, R. H., & Larson, D. R. (2013). Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nature Reviews Genetics, 14(8), 572-584. doi:10.1038/nrg3484

Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015

Purvis, J. E., & Lahav, G. (2013). Encoding and Decoding Cellular Information through Signaling Dynamics. Cell, 152(5), 945-956. doi:10.1016/j.cell.2013.02.005

Weake, V. M., & Workman, J. L. (2010). Inducible gene expression: diverse regulatory mechanisms. Nature Reviews Genetics, 11(6), 426-437. doi:10.1038/nrg2781

De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055

Vihervaara, A., Duarte, F. M., & Lis, J. T. (2018). Molecular mechanisms driving transcriptional stress responses. Nature Reviews Genetics, 19(6), 385-397. doi:10.1038/s41576-018-0001-6

Pérez-Ortín, J. E., Alepuz, P., Chávez, S., & Choder, M. (2013). Eukaryotic mRNA Decay: Methodologies, Pathways, and Links to Other Stages of Gene Expression. Journal of Molecular Biology, 425(20), 3750-3775. doi:10.1016/j.jmb.2013.02.029

Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z., & Struhl, K. (2005). Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo. Current Protocols in Molecular Biology, 69(1). doi:10.1002/0471142727.mb2103s69

Wa Maina, C., Honkela, A., Matarese, F., Grote, K., Stunnenberg, H. G., Reid, G., … Rattray, M. (2014). Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational Biology, 10(5), e1003598. doi:10.1371/journal.pcbi.1003598

Mason, P. B., & Struhl, K. (2005). Distinction and Relationship between Elongation Rate and Processivity of RNA Polymerase II In Vivo. Molecular Cell, 17(6), 831-840. doi:10.1016/j.molcel.2005.02.017

Sato, H., Das, S., Singer, R. H., & Vera, M. (2020). Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annual Review of Biochemistry, 89(1), 159-187. doi:10.1146/annurev-biochem-011520-104955

Janicki, S. M., Tsukamoto, T., Salghetti, S. E., Tansey, W. P., Sachidanandam, R., Prasanth, K. V., … Spector, D. L. (2004). From Silencing to Gene Expression. Cell, 116(5), 683-698. doi:10.1016/s0092-8674(04)00171-0

Chao, J. A., Patskovsky, Y., Almo, S. C., & Singer, R. H. (2007). Structural basis for the coevolution of a viral RNA–protein complex. Nature Structural & Molecular Biology, 15(1), 103-105. doi:10.1038/nsmb1327

Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., & Long, R. M. (1998). Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 2(4), 437-445. doi:10.1016/s1097-2765(00)80143-4

Campbell, P. D., Chao, J. A., Singer, R. H., & Marlow, F. L. (2015). Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development. doi:10.1242/dev.118968

Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell, 123(6), 1025-1036. doi:10.1016/j.cell.2005.09.031

Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., & Singer, R. H. (2011). Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science, 332(6028), 475-478. doi:10.1126/science.1202142

Chubb, J. R., Trcek, T., Shenoy, S. M., & Singer, R. H. (2006). Transcriptional Pulsing of a Developmental Gene. Current Biology, 16(10), 1018-1025. doi:10.1016/j.cub.2006.03.092

Garcia, H. G., Tikhonov, M., Lin, A., & Gregor, T. (2013). Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning. Current Biology, 23(21), 2140-2145. doi:10.1016/j.cub.2013.08.054

Xu, H., Wang, J., Liang, Y., Fu, Y., Li, S., Huang, J., … Chen, B. (2020). TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Research, 48(22), e127-e127. doi:10.1093/nar/gkaa906

Niedenthal, R. K., Riles, L., Johnston, M., & Hegemann, J. H. (1996). Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast, 12(8), 773-786. doi:10.1002/(sici)1097-0061(19960630)12:8<773::aid-yea972>3.0.co;2-l

Plautz, J. D., Day, R. N., Dailey, G. M., Welsh, S. B., Hall, J. C., Halpain, S., & Kay, S. A. (1996). Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 173(1), 83-87. doi:10.1016/0378-1119(95)00700-8

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green Fluorescent Protein as a Marker for Gene Expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295

Longo, D., & Hasty, J. (2006). Dynamics of single‐cell gene expression. Molecular Systems Biology, 2(1), 64. doi:10.1038/msb4100110

Zou, F., & Bai, L. (2019). Using time-lapse fluorescence microscopy to study gene regulation. Methods, 159-160, 138-145. doi:10.1016/j.ymeth.2018.12.010

Han, J., Xia, A., Huang, Y., Ni, L., Chen, W., Jin, Z., … Jin, F. (2019). Simultaneous Visualization of Multiple Gene Expression in Single Cells Using an Engineered Multicolor Reporter Toolbox and Approach of Spectral Crosstalk Correction. ACS Synthetic Biology, 8(11), 2536-2546. doi:10.1021/acssynbio.9b00223

Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:14<1313::aid-yea626>3.0.co;2-o

Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., … Kain, S. R. (1998). Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter. Journal of Biological Chemistry, 273(52), 34970-34975. doi:10.1074/jbc.273.52.34970

Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjørn, S. P., Givskov, M., & Molin, S. (1998). New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 64(6), 2240-2246. doi:10.1128/aem.64.6.2240-2246.1998

He, L., Binari, R., Huang, J., Falo-Sanjuan, J., & Perrimon, N. (2019). In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. eLife, 8. doi:10.7554/elife.46181

Allen, M. S., Wilgus, J. R., Chewning, C. S., Sayler, G. S., & Simpson, M. L. (2006). A destabilized bacterial luciferase for dynamic gene expression studies. Systems and Synthetic Biology, 1(1), 3-9. doi:10.1007/s11693-006-9001-5

Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., … Nakajima, Y. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. Journal of Biotechnology, 194, 115-123. doi:10.1016/j.jbiotec.2014.12.004

Leclerc, G. M., Boockfor, F. R., Faught, W. J., & Frawley, L. S. (2000). Development of a Destabilized Firefly Luciferase Enzyme for Measurement of Gene Expression. BioTechniques, 29(3), 590-601. doi:10.2144/00293rr02

Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905

Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105

Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526

Mazo-Vargas, A., Park, H., Aydin, M., & Buchler, N. E. (2014). Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Molecular Biology of the Cell, 25(22), 3699-3708. doi:10.1091/mbc.e14-07-1187

Liu, Z., & Tjian, R. (2018). Visualizing transcription factor dynamics in living cells. Journal of Cell Biology, 217(4), 1181-1191. doi:10.1083/jcb.201710038

Jin, X., Hapsari, N. D., Lee, S., & Jo, K. (2020). DNA binding fluorescent proteins as single-molecule probes. The Analyst, 145(12), 4079-4095. doi:10.1039/d0an00218f

Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13

Pascual-Ahuir, A., González-Cantó, E., Juyoux, P., Pable, J., Poveda-Huertes, D., Saiz-Balbastre, S., … Proft, M. (2019). Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1862(4), 457-471. doi:10.1016/j.bbagrm.2019.02.009

Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851

Paliwal, S., Iglesias, P. A., Campbell, K., Hilioti, Z., Groisman, A., & Levchenko, A. (2007). MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 446(7131), 46-51. doi:10.1038/nature05561

Zhang, Q., Yoon, Y., Yu, Y., Parnell, E. J., Garay, J. A. R., Mwangi, M. M., … Bai, L. (2013). Stochastic expression and epigenetic memory at the yeastHOpromoter. Proceedings of the National Academy of Sciences, 110(34), 14012-14017. doi:10.1073/pnas.1306113110

Gutin, J., Joseph‐Strauss, D., Sadeh, A., Shalom, E., & Friedman, N. (2019). Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Molecular Systems Biology, 15(8). doi:10.15252/msb.20198939

Rajkumar, A. S., Liu, G., Bergenholm, D., Arsovska, D., Kristensen, M., Nielsen, J., … Keasling, J. D. (2016). Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 44(17), e136-e136. doi:10.1093/nar/gkw553

Duveau, F., Yuan, D. C., Metzger, B. P. H., Hodgins-Davis, A., & Wittkopp, P. J. (2017). Effects of mutation and selection on plasticity of a promoter activity inSaccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 114(52), E11218-E11227. doi:10.1073/pnas.1713960115

Redden, H., Morse, N., & Alper, H. S. (2014). The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Research, n/a-n/a. doi:10.1111/1567-1364.12188

Brouwer, I., & Lenstra, T. L. (2019). Visualizing transcription: key to understanding gene expression dynamics. Current Opinion in Chemical Biology, 51, 122-129. doi:10.1016/j.cbpa.2019.05.031

Rodriguez, J., & Larson, D. R. (2020). Transcription in Living Cells: Molecular Mechanisms of Bursting. Annual Review of Biochemistry, 89(1), 189-212. doi:10.1146/annurev-biochem-011520-105250

Tunnacliffe, E., & Chubb, J. R. (2020). What Is a Transcriptional Burst? Trends in Genetics, 36(4), 288-297. doi:10.1016/j.tig.2020.01.003

Hornung, G., Bar-Ziv, R., Rosin, D., Tokuriki, N., Tawfik, D. S., Oren, M., & Barkai, N. (2012). Noise-mean relationship in mutated promoters. Genome Research, 22(12), 2409-2417. doi:10.1101/gr.139378.112

Dadiani, M., van Dijk, D., Segal, B., Field, Y., Ben-Artzi, G., Raveh-Sadka, T., … Segal, E. (2013). Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Research, 23(6), 966-976. doi:10.1101/gr.149096.112

Raveh-Sadka, T., Levo, M., Shabi, U., Shany, B., Keren, L., Lotan-Pompan, M., … Segal, E. (2012). Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nature Genetics, 44(7), 743-750. doi:10.1038/ng.2305

Van Dijk, D., Sharon, E., Lotan-Pompan, M., Weinberger, A., Segal, E., & Carey, L. B. (2016). Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research, 27(1), 87-94. doi:10.1101/gr.212316.116

Mehta, G. D., Ball, D. A., Eriksson, P. R., Chereji, R. V., Clark, D. J., McNally, J. G., & Karpova, T. S. (2018). Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Molecular Cell, 72(5), 875-887.e9. doi:10.1016/j.molcel.2018.09.009

Ball, D. A., Mehta, G. D., Salomon-Kent, R., Mazza, D., Morisaki, T., Mueller, F., … Karpova, T. S. (2016). Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin. Nucleic Acids Research, 44(21), e160-e160. doi:10.1093/nar/gkw744

Karpova, T. S., Kim, M. J., Spriet, C., Nalley, K., Stasevich, T. J., Kherrouche, Z., … McNally, J. G. (2008). Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter. Science, 319(5862), 466-469. doi:10.1126/science.1150559

Donovan, B. T., Huynh, A., Ball, D. A., Patel, H. P., Poirier, M. G., Larson, D. R., … Lenstra, T. L. (2019). Live‐cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. The EMBO Journal, 38(12). doi:10.15252/embj.2018100809

Lenstra, T. L., Coulon, A., Chow, C. C., & Larson, D. R. (2015). Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription. Molecular Cell, 60(4), 597-610. doi:10.1016/j.molcel.2015.09.028

Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F. E., Zimmer, C., … Darzacq, X. (2014). Transcription Factors Modulate c-Fos Transcriptional Bursts. Cell Reports, 8(1), 75-83. doi:10.1016/j.celrep.2014.05.053

Stavreva, D. A., Garcia, D. A., Fettweis, G., Gudla, P. R., Zaki, G. F., Soni, V., … Hager, G. L. (2019). Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Molecular Cell, 75(6), 1161-1177.e11. doi:10.1016/j.molcel.2019.06.042

Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., … White, M. R. H. (2004). Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression. Science, 306(5696), 704-708. doi:10.1126/science.1099962

Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., & Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genetics, 36(2), 147-150. doi:10.1038/ng1293

Izeddin, I., Récamier, V., Bosanac, L., Cissé, I. I., Boudarene, L., Dugast-Darzacq, C., … Darzacq, X. (2014). Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife, 3. doi:10.7554/elife.02230

Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., & Naef, F. (2011). Mammalian Genes Are Transcribed with Widely Different Bursting Kinetics. Science, 332(6028), 472-474. doi:10.1126/science.1198817

Keller, S. H., Jena, S. G., Yamazaki, Y., & Lim, B. (2020). Regulation of spatiotemporal limits of developmental gene expression via enhancer grammar. Proceedings of the National Academy of Sciences, 117(26), 15096-15103. doi:10.1073/pnas.1917040117

Ochiai, H., Hayashi, T., Umeda, M., Yoshimura, M., Harada, A., Shimizu, Y., … Nikaido, I. (2020). Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 6(25). doi:10.1126/sciadv.aaz6699

Hoppe, C., Bowles, J. R., Minchington, T. G., Sutcliffe, C., Upadhyai, P., Rattray, M., & Ashe, H. L. (2020). Modulation of the Promoter Activation Rate Dictates the Transcriptional Response to Graded BMP Signaling Levels in the Drosophila Embryo. Developmental Cell, 54(6), 727-741.e7. doi:10.1016/j.devcel.2020.07.007

Bakker, R., Mani, M., & Carthew, R. W. (2020). The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. eLife, 9. doi:10.7554/elife.56076

Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207-220. doi:10.1038/s41576-018-0089-8

Nocetti, N., & Whitehouse, I. (2016). Nucleosome repositioning underlies dynamic gene expression. Genes & Development, 30(6), 660-672. doi:10.1101/gad.274910.115

Cosma, M. P., Tanaka, T., & Nasmyth, K. (1999). Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter. Cell, 97(3), 299-311. doi:10.1016/s0092-8674(00)80740-0

Govind, C. K., Yoon, S., Qiu, H., Govind, S., & Hinnebusch, A. G. (2005). Simultaneous Recruitment of Coactivators by Gcn4p Stimulates Multiple Steps of Transcription In Vivo. Molecular and Cellular Biology, 25(13), 5626-5638. doi:10.1128/mcb.25.13.5626-5638.2005

Biggar, S. R. (1999). Continuous and widespread roles for the Swi-Snf complex in transcription. The EMBO Journal, 18(8), 2254-2264. doi:10.1093/emboj/18.8.2254

Rando, O. J., & Winston, F. (2012). Chromatin and Transcription in Yeast. Genetics, 190(2), 351-387. doi:10.1534/genetics.111.132266

Shen, C.-H., Leblanc, B. P., Alfieri, J. A., & Clark, D. J. (2001). Remodeling of Yeast CUP1 Chromatin Involves Activator-Dependent Repositioning of Nucleosomes over the Entire Gene and Flanking Sequences. Molecular and Cellular Biology, 21(2), 534-547. doi:10.1128/mcb.21.2.534-547.2001

Shen, C.-H., & Clark, D. J. (2001). DNA Sequence Plays a Major Role in Determining Nucleosome Positions in Yeast CUP1 Chromatin. Journal of Biological Chemistry, 276(37), 35209-35216. doi:10.1074/jbc.m104733200

Erkina, T. Y., Zou, Y., Freeling, S., Vorobyev, V. I., & Erkine, A. M. (2009). Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Research, 38(5), 1441-1449. doi:10.1093/nar/gkp1130

Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y., & Stillman, D. J. (2006). SWI/SNF Binding to the HO Promoter Requires Histone Acetylation and Stimulates TATA-Binding Protein Recruitment. Molecular and Cellular Biology, 26(11), 4095-4110. doi:10.1128/mcb.01849-05

Sudarsanam, P. (1999). The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription invivo and is partially redundant with the histone acetyltransferase, Gcn5. The EMBO Journal, 18(11), 3101-3106. doi:10.1093/emboj/18.11.3101

Barbaric, S., Luckenbach, T., Schmid, A., Blaschke, D., Hörz, W., & Korber, P. (2007). Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo. Journal of Biological Chemistry, 282(38), 27610-27621. doi:10.1074/jbc.m700623200

Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9

Lemieux, K., & Gaudreau, L. (2004). Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs, and RNA polymerase II. The EMBO Journal, 23(20), 4040-4050. doi:10.1038/sj.emboj.7600416

Rienzo, A., Poveda-Huertes, D., Aydin, S., Buchler, N. E., Pascual-Ahuir, A., & Proft, M. (2015). Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Molecular and Cellular Biology, 35(21), 3669-3683. doi:10.1128/mcb.00729-15

Kundu, S., Horn, P. J., & Peterson, C. L. (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes & Development, 21(8), 997-1004. doi:10.1101/gad.1506607

Dhasarathy, A., & Kladde, M. P. (2005). Promoter Occupancy Is a Major Determinant of Chromatin Remodeling Enzyme Requirements. Molecular and Cellular Biology, 25(7), 2698-2707. doi:10.1128/mcb.25.7.2698-2707.2005

Acar, M., Becskei, A., & van Oudenaarden, A. (2005). Enhancement of cellular memory by reducing stochastic transitions. Nature, 435(7039), 228-232. doi:10.1038/nature03524

Vanacloig-Pedros, E., Lozano-Pérez, C., Alarcón, B., Pascual-Ahuir, A., & Proft, M. (2019). Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast. Journal of Biological Chemistry, 294(35), 12933-12946. doi:10.1074/jbc.ra119.009291

Thakur, J. K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., … Näär, A. M. (2008). A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 452(7187), 604-609. doi:10.1038/nature06836

Hao, N., Budnik, B. A., Gunawardena, J., & O’Shea, E. K. (2013). Tunable Signal Processing Through Modular Control of Transcription Factor Translocation. Science, 339(6118), 460-464. doi:10.1126/science.1227299

Hansen, A. S., & O’Shea, E. K. (2016). Encoding four gene expression programs in the activation dynamics of a single transcription factor. Current Biology, 26(7), R269-R271. doi:10.1016/j.cub.2016.02.058

Hao, N., & O’Shea, E. K. (2011). Signal-dependent dynamics of transcription factor translocation controls gene expression. Nature Structural & Molecular Biology, 19(1), 31-39. doi:10.1038/nsmb.2192

Babazadeh, R., Lahtvee, P.-J., Adiels, C. B., Goksör, M., Nielsen, J. B., & Hohmann, S. (2017). The yeast osmostress response is carbon source dependent. Scientific Reports, 7(1). doi:10.1038/s41598-017-01141-4

Vanacloig-Pedros, E., Bets-Plasencia, C., Pascual-Ahuir, A., & Proft, M. (2015). Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation. Journal of Biological Chemistry, 290(16), 10163-10175. doi:10.1074/jbc.m115.637264

Nikopoulou, C., Parekh, S., & Tessarz, P. (2019). Ageing and sources of transcriptional heterogeneity. Biological Chemistry, 400(7), 867-878. doi:10.1515/hsz-2018-0449

Feser, J., Truong, D., Das, C., Carson, J. J., Kieft, J., Harkness, T., & Tyler, J. K. (2010). Elevated Histone Expression Promotes Life Span Extension. Molecular Cell, 39(5), 724-735. doi:10.1016/j.molcel.2010.08.015

Hu, Z., Chen, K., Xia, Z., Chavez, M., Pal, S., Seol, J.-H., … Tyler, J. K. (2014). Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes & Development, 28(4), 396-408. doi:10.1101/gad.233221.113

Sen, P., Dang, W., Donahue, G., Dai, J., Dorsey, J., Cao, X., … Berger, S. L. (2015). H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes & Development, 29(13), 1362-1376. doi:10.1101/gad.263707.115

Feser, J., & Tyler, J. (2010). Chromatin structure as a mediator of aging. FEBS Letters, 585(13), 2041-2048. doi:10.1016/j.febslet.2010.11.016

Liu, P., Song, R., Elison, G. L., Peng, W., & Acar, M. (2017). Noise reduction as an emergent property of single-cell aging. Nature Communications, 8(1). doi:10.1038/s41467-017-00752-9

Işıldak, U., Somel, M., Thornton, J. M., & Dönertaş, H. M. (2020). Temporal changes in the gene expression heterogeneity during brain development and aging. Scientific Reports, 10(1). doi:10.1038/s41598-020-60998-0

Wiley, C. D., Flynn, J. M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., … Campisi, J. (2017). Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell, 16(5), 1043-1050. doi:10.1111/acel.12632

Enge, M., Arda, H. E., Mignardi, M., Beausang, J., Bottino, R., Kim, S. K., & Quake, S. R. (2017). Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell, 171(2), 321-330.e14. doi:10.1016/j.cell.2017.09.004

Bahar, R., Hartmann, C. H., Rodriguez, K. A., Denny, A. D., Busuttil, R. A., Dollé, M. E. T., … Vijg, J. (2006). Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature, 441(7096), 1011-1014. doi:10.1038/nature04844

Angelidis, I., Simon, L. M., Fernandez, I. E., Strunz, M., Mayr, C. H., Greiffo, F. R., … Schiller, H. B. (2019). An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nature Communications, 10(1). doi:10.1038/s41467-019-08831-9

Koohy, H., Bolland, D. J., Matheson, L. S., Schoenfelder, S., Stellato, C., Dimond, A., … Varga-Weisz, P. D. (2018). Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. Genome Biology, 19(1). doi:10.1186/s13059-018-1489-y

Bochkis, I. M., Przybylski, D., Chen, J., & Regev, A. (2014). Changes in Nucleosome Occupancy Associated with Metabolic Alterations in Aged Mammalian Liver. Cell Reports, 9(3), 996-1006. doi:10.1016/j.celrep.2014.09.048

Cheung, P., Vallania, F., Warsinske, H. C., Donato, M., Schaffert, S., Chang, S. E., … Kuo, A. J. (2018). Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell, 173(6), 1385-1397.e14. doi:10.1016/j.cell.2018.03.079

Booth, L. N., & Brunet, A. (2016). The Aging Epigenome. Molecular Cell, 62(5), 728-744. doi:10.1016/j.molcel.2016.05.013

Martinez-Jimenez, C. P., Eling, N., Chen, H.-C., Vallejos, C. A., Kolodziejczyk, A. A., Connor, F., … Odom, D. T. (2017). Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science, 355(6332), 1433-1436. doi:10.1126/science.aah4115

Frenk, S., & Houseley, J. (2018). Gene expression hallmarks of cellular ageing. Biogerontology, 19(6), 547-566. doi:10.1007/s10522-018-9750-z

Riera, C. E., Merkwirth, C., De Magalhaes Filho, C. D., & Dillin, A. (2016). Signaling Networks Determining Life Span. Annual Review of Biochemistry, 85(1), 35-64. doi:10.1146/annurev-biochem-060815-014451

Guan, Q., Haroon, S., Bravo, D. G., Will, J. L., & Gasch, A. P. (2012). Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae. Genetics, 192(2), 495-505. doi:10.1534/genetics.112.143016

Ben Meriem, Z., Khalil, Y., Hersen, P., & Fabre, E. (2019). Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast. Cells, 8(6), 582. doi:10.3390/cells8060582

D’Urso, A., & Brickner, J. H. (2016). Epigenetic transcriptional memory. Current Genetics, 63(3), 435-439. doi:10.1007/s00294-016-0661-8

Avramova, Z. (2015). Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal, 83(1), 149-159. doi:10.1111/tpj.12832

Gialitakis, M., Arampatzi, P., Makatounakis, T., & Papamatheakis, J. (2010). Gamma Interferon-Dependent Transcriptional Memory via Relocalization of a Gene Locus to PML Nuclear Bodies. Molecular and Cellular Biology, 30(8), 2046-2056. doi:10.1128/mcb.00906-09

Ding, Y., Liu, N., Virlouvet, L., Riethoven, J.-J., Fromm, M., & Avramova, Z. (2013). Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology, 13(1). doi:10.1186/1471-2229-13-229

Liu, N., Ding, Y., Fromm, M., & Avramova, Z. (2014). Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Research, 42(9), 5556-5566. doi:10.1093/nar/gku220

Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought «train» transcriptional responses in Arabidopsis. Nature Communications, 3(1). doi:10.1038/ncomms1732

Brickner, D. G., Cajigas, I., Fondufe-Mittendorf, Y., Ahmed, S., Lee, P.-C., Widom, J., & Brickner, J. H. (2007). H2A.Z-Mediated Localization of Genes at the Nuclear Periphery Confers Epigenetic Memory of Previous Transcriptional State. PLoS Biology, 5(4), e81. doi:10.1371/journal.pbio.0050081

Sood, V., Cajigas, I., D’Urso, A., Light, W. H., & Brickner, J. H. (2017). Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae. Genetics, 206(4), 1895-1907. doi:10.1534/genetics.117.201632

Kundu, S., & Peterson, C. L. (2010). Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes. Molecular and Cellular Biology, 30(10), 2330-2340. doi:10.1128/mcb.01675-09

Zacharioudakis, I., Gligoris, T., & Tzamarias, D. (2007). A Yeast Catabolic Enzyme Controls Transcriptional Memory. Current Biology, 17(23), 2041-2046. doi:10.1016/j.cub.2007.10.044

Lavy, T., Yanagida, H., & Tawfik, D. S. (2015). Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication. Molecular Biology and Evolution, 33(2), 472-477. doi:10.1093/molbev/msv240

Sood, V., & Brickner, J. H. (2017). Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species. Current Biology, 27(23), 3591-3602.e3. doi:10.1016/j.cub.2017.10.035

D’Urso, A., Takahashi, Y., Xiong, B., Marone, J., Coukos, R., Randise-Hinchliff, C., … Brickner, J. H. (2016). Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife, 5. doi:10.7554/elife.16691

Light, W. H., Freaney, J., Sood, V., Thompson, A., D’Urso, A., Horvath, C. M., & Brickner, J. H. (2013). A Conserved Role for Human Nup98 in Altering Chromatin Structure and Promoting Epigenetic Transcriptional Memory. PLoS Biology, 11(3), e1001524. doi:10.1371/journal.pbio.1001524

Light, W. H., Brickner, D. G., Brand, V. R., & Brickner, J. H. (2010). Interaction of a DNA Zip Code with the Nuclear Pore Complex Promotes H2A.Z Incorporation and INO1 Transcriptional Memory. Molecular Cell, 40(1), 112-125. doi:10.1016/j.molcel.2010.09.007

Fabrizio, P., Garvis, S., & Palladino, F. (2019). Histone Methylation and Memory of Environmental Stress. Cells, 8(4), 339. doi:10.3390/cells8040339

Lämke, J., Brzezinka, K., Altmann, S., & Bäurle, I. (2015). A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory. The EMBO Journal, 35(2), 162-175. doi:10.15252/embj.201592593

Bevington, S. L., Cauchy, P., Piper, J., Bertrand, E., Lalli, N., Jarvis, R. C., … Cockerill, P. N. (2016). Inducible chromatin priming is associated with the establishment of immunological memory in T cells. The EMBO Journal, 35(5), 515-535. doi:10.15252/embj.201592534

To, T. K., & Kim, J. M. (2014). Epigenetic regulation of gene responsiveness in Arabidopsis. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00548

Maxwell, C. S., Kruesi, W. S., Core, L. J., Kurhanewicz, N., Waters, C. T., Lewarch, C. L., … Baugh, L. R. (2014). Pol II Docking and Pausing at Growth and Stress Genes in C. elegans. Cell Reports, 6(3), 455-466. doi:10.1016/j.celrep.2014.01.008

Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 1183-1186. doi:10.1126/science.1070919

Rogers, K. W., & Schier, A. F. (2011). Morphogen Gradients: From Generation to Interpretation. Annual Review of Cell and Developmental Biology, 27(1), 377-407. doi:10.1146/annurev-cellbio-092910-154148

Losick, R., & Desplan, C. (2008). Stochasticity and Cell Fate. Science, 320(5872), 65-68. doi:10.1126/science.1147888

Natoli, G., Saccani, S., Bosisio, D., & Marazzi, I. (2005). Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nature Immunology, 6(5), 439-445. doi:10.1038/ni1196

Kellogg, R. A., & Tay, S. (2015). Noise Facilitates Transcriptional Control under Dynamic Inputs. Cell, 160(3), 381-392. doi:10.1016/j.cell.2015.01.013

Wheat, J. C., Sella, Y., Willcockson, M., Skoultchi, A. I., Bergman, A., Singer, R. H., & Steidl, U. (2020). Single-molecule imaging of transcription dynamics in somatic stem cells. Nature, 583(7816), 431-436. doi:10.1038/s41586-020-2432-4

Swain, P. S., Elowitz, M. B., & Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy of Sciences, 99(20), 12795-12800. doi:10.1073/pnas.162041399

Kærn, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Reviews Genetics, 6(6), 451-464. doi:10.1038/nrg1615

Acar, M., Mettetal, J. T., & van Oudenaarden, A. (2008). Stochastic switching as a survival strategy in fluctuating environments. Nature Genetics, 40(4), 471-475. doi:10.1038/ng.110

Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial Persistence as a Phenotypic Switch. Science, 305(5690), 1622-1625. doi:10.1126/science.1099390

Schmutzer, M., & Wagner, A. (2020). Gene expression noise can promote the fixation of beneficial mutations in fluctuating environments. PLOS Computational Biology, 16(10), e1007727. doi:10.1371/journal.pcbi.1007727

Levy, S. F., Ziv, N., & Siegal, M. L. (2012). Bet Hedging in Yeast by Heterogeneous, Age-Correlated Expression of a Stress Protectant. PLoS Biology, 10(5), e1001325. doi:10.1371/journal.pbio.1001325

Levy, S. F. (2016). Cellular Heterogeneity: Benefits Besides Bet-Hedging. Current Biology, 26(9), R355-R357. doi:10.1016/j.cub.2016.03.034

Gefen, O., & Balaban, N. Q. (2009). The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiology Reviews, 33(4), 704-717. doi:10.1111/j.1574-6976.2008.00156.x

Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., … Settleman, J. (2010). A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell, 141(1), 69-80. doi:10.1016/j.cell.2010.02.027

Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., … Herlyn, M. (2010). A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth. Cell, 141(4), 583-594. doi:10.1016/j.cell.2010.04.020

Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C., … Raj, A. (2017). Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 546(7658), 431-435. doi:10.1038/nature22794

Raser, J. M., & O’Shea, E. K. (2004). Control of Stochasticity in Eukaryotic Gene Expression. Science, 304(5678), 1811-1814. doi:10.1126/science.1098641

Lidstrom, M. E., & Konopka, M. C. (2010). The role of physiological heterogeneity in microbial population behavior. Nature Chemical Biology, 6(10), 705-712. doi:10.1038/nchembio.436

Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S., & Borley, J. (2014). Poised epigenetic states and acquired drug resistance in cancer. Nature Reviews Cancer, 14(11), 747-753. doi:10.1038/nrc3819

Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., & Barkai, N. (2006). Noise in protein expression scales with natural protein abundance. Nature Genetics, 38(6), 636-643. doi:10.1038/ng1807

Barroso, G. V., Puzovic, N., & Dutheil, J. Y. (2018). The Evolution of Gene-Specific Transcriptional Noise Is Driven by Selection at the Pathway Level. Genetics, 208(1), 173-189. doi:10.1534/genetics.117.300467

Newman, J. R. S., Ghaemmaghami, S., Ihmels, J., Breslow, D. K., Noble, M., DeRisi, J. L., & Weissman, J. S. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature, 441(7095), 840-846. doi:10.1038/nature04785

Gasch, A. P., Yu, F. B., Hose, J., Escalante, L. E., Place, M., Bacher, R., … McClean, M. N. (2017). Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLOS Biology, 15(12), e2004050. doi:10.1371/journal.pbio.2004050

Charlebois, D. A., Abdennur, N., & Kaern, M. (2011). Gene Expression Noise Facilitates Adaptation and Drug Resistance Independently of Mutation. Physical Review Letters, 107(21). doi:10.1103/physrevlett.107.218101

Charlebois, D. A. (2015). Effect and evolution of gene expression noise on the fitness landscape. Physical Review E, 92(2). doi:10.1103/physreve.92.022713

Jones, D. L., Brewster, R. C., & Phillips, R. (2014). Promoter architecture dictates cell-to-cell variability in gene expression. Science, 346(6216), 1533-1536. doi:10.1126/science.1255301

Sanchez, A., & Golding, I. (2013). Genetic Determinants and Cellular Constraints in Noisy Gene Expression. Science, 342(6163), 1188-1193. doi:10.1126/science.1242975

Sanchez, A., Choubey, S., & Kondev, J. (2013). Regulation of Noise in Gene Expression. Annual Review of Biophysics, 42(1), 469-491. doi:10.1146/annurev-biophys-083012-130401

Sánchez, Á., & Kondev, J. (2008). Transcriptional control of noise in gene expression. Proceedings of the National Academy of Sciences, 105(13), 5081-5086. doi:10.1073/pnas.0707904105

Das, D., Dey, S., Brewster, R. C., & Choubey, S. (2017). Effect of transcription factor resource sharing on gene expression noise. PLOS Computational Biology, 13(4), e1005491. doi:10.1371/journal.pcbi.1005491

Engl, C., Jovanovic, G., Brackston, R. D., Kotta-Loizou, I., & Buck, M. (2020). The route to transcription initiation determines the mode of transcriptional bursting in E. coli. Nature Communications, 11(1). doi:10.1038/s41467-020-16367-6

Brown, C. R., & Boeger, H. (2014). Nucleosomal promoter variation generates gene expression noise. Proceedings of the National Academy of Sciences, 111(50), 17893-17898. doi:10.1073/pnas.1417527111

Brown, C. R., Mao, C., Falkovskaia, E., Jurica, M. S., & Boeger, H. (2013). Linking Stochastic Fluctuations in Chromatin Structure and Gene Expression. PLoS Biology, 11(8), e1001621. doi:10.1371/journal.pbio.1001621

Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., … Greenleaf, W. J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486-490. doi:10.1038/nature14590

Wu, S., Li, K., Li, Y., Zhao, T., Li, T., Yang, Y.-F., & Qian, W. (2017). Independent regulation of gene expression level and noise by histone modifications. PLOS Computational Biology, 13(6), e1005585. doi:10.1371/journal.pcbi.1005585

Lagha, M., Bothma, J. P., Esposito, E., Ng, S., Stefanik, L., Tsui, C., … Levine, M. S. (2013). Paused Pol II Coordinates Tissue Morphogenesis in the Drosophila Embryo. Cell, 153(5), 976-987. doi:10.1016/j.cell.2013.04.045

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., … Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology, 33(2), 155-160. doi:10.1038/nbt.3102

Battich, N., Stoeger, T., & Pelkmans, L. (2015). Control of Transcript Variability in Single Mammalian Cells. Cell, 163(7), 1596-1610. doi:10.1016/j.cell.2015.11.018

Ansel, J., Bottin, H., Rodriguez-Beltran, C., Damon, C., Nagarajan, M., Fehrmann, S., … Yvert, G. (2008). Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait. PLoS Genetics, 4(4), e1000049. doi:10.1371/journal.pgen.1000049

You, S.-T., Jhou, Y.-T., Kao, C.-F., & Leu, J.-Y. (2019). Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. PLOS Biology, 17(10), e3000433. doi:10.1371/journal.pbio.3000433




This item appears in the following Collection(s)

Show full item record