Mostrar el registro sencillo del ítem
dc.contributor.author | Pascual-Ahuir Giner, María Desamparados | es_ES |
dc.contributor.author | Fita-Torró, Josep | es_ES |
dc.contributor.author | Proft, Markus Hans | es_ES |
dc.date.accessioned | 2021-07-17T03:34:42Z | |
dc.date.available | 2021-07-17T03:34:42Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169418 | |
dc.description.abstract | [EN] The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems. | es_ES |
dc.description.sponsorship | This work was funded by Ministerio de Ciencia, Innovacion y Universidades, grant number BFU2016-75792-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Molecular Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gene expression | es_ES |
dc.subject | Transcriptional activation | es_ES |
dc.subject | Transcriptional memory | es_ES |
dc.subject | Single-cell variability | es_ES |
dc.subject | Reporter assays | es_ES |
dc.subject | Stress adaptation | es_ES |
dc.subject | Transcriptional dynamics | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijms21218278 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2016-75792-R/ES/ADAPTACION COORDINADA A ESTRES MEDIANTE LA MODULACION DE LA HOMEOSTASIS MITOCONDRIAL Y LA ACTIVACION SELECTIVA DEL TRANSPORTE MULTI-DROGA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Pascual-Ahuir Giner, MD.; Fita-Torró, J.; Proft, MH. (2020). Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. International Journal of Molecular Sciences. 21(21):1-19. https://doi.org/10.3390/ijms21218278 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijms21218278 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.eissn | 1422-0067 | es_ES |
dc.identifier.pmid | 33167354 | es_ES |
dc.identifier.pmcid | PMC7663833 | es_ES |
dc.relation.pasarela | S\424208 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Murray, J. I., Whitfield, M. L., Trinklein, N. D., Myers, R. M., Brown, P. O., & Botstein, D. (2004). Diverse and Specific Gene Expression Responses to Stresses in Cultured Human Cells. Molecular Biology of the Cell, 15(5), 2361-2374. doi:10.1091/mbc.e03-11-0799 | es_ES |
dc.description.references | Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241 | es_ES |
dc.description.references | de-Leon, S. B.-T., & Davidson, E. H. (2007). Gene Regulation: Gene Control Network in Development. Annual Review of Biophysics and Biomolecular Structure, 36(1), 191-212. doi:10.1146/annurev.biophys.35.040405.102002 | es_ES |
dc.description.references | Lenstra, T. L., Rodriguez, J., Chen, H., & Larson, D. R. (2016). Transcription Dynamics in Living Cells. Annual Review of Biophysics, 45(1), 25-47. doi:10.1146/annurev-biophys-062215-010838 | es_ES |
dc.description.references | Coulon, A., Chow, C. C., Singer, R. H., & Larson, D. R. (2013). Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nature Reviews Genetics, 14(8), 572-584. doi:10.1038/nrg3484 | es_ES |
dc.description.references | Yosef, N., & Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell, 144(6), 886-896. doi:10.1016/j.cell.2011.02.015 | es_ES |
dc.description.references | Purvis, J. E., & Lahav, G. (2013). Encoding and Decoding Cellular Information through Signaling Dynamics. Cell, 152(5), 945-956. doi:10.1016/j.cell.2013.02.005 | es_ES |
dc.description.references | Weake, V. M., & Workman, J. L. (2010). Inducible gene expression: diverse regulatory mechanisms. Nature Reviews Genetics, 11(6), 426-437. doi:10.1038/nrg2781 | es_ES |
dc.description.references | De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055 | es_ES |
dc.description.references | Vihervaara, A., Duarte, F. M., & Lis, J. T. (2018). Molecular mechanisms driving transcriptional stress responses. Nature Reviews Genetics, 19(6), 385-397. doi:10.1038/s41576-018-0001-6 | es_ES |
dc.description.references | Pérez-Ortín, J. E., Alepuz, P., Chávez, S., & Choder, M. (2013). Eukaryotic mRNA Decay: Methodologies, Pathways, and Links to Other Stages of Gene Expression. Journal of Molecular Biology, 425(20), 3750-3775. doi:10.1016/j.jmb.2013.02.029 | es_ES |
dc.description.references | Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z., & Struhl, K. (2005). Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo. Current Protocols in Molecular Biology, 69(1). doi:10.1002/0471142727.mb2103s69 | es_ES |
dc.description.references | Wa Maina, C., Honkela, A., Matarese, F., Grote, K., Stunnenberg, H. G., Reid, G., … Rattray, M. (2014). Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Computational Biology, 10(5), e1003598. doi:10.1371/journal.pcbi.1003598 | es_ES |
dc.description.references | Mason, P. B., & Struhl, K. (2005). Distinction and Relationship between Elongation Rate and Processivity of RNA Polymerase II In Vivo. Molecular Cell, 17(6), 831-840. doi:10.1016/j.molcel.2005.02.017 | es_ES |
dc.description.references | Sato, H., Das, S., Singer, R. H., & Vera, M. (2020). Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annual Review of Biochemistry, 89(1), 159-187. doi:10.1146/annurev-biochem-011520-104955 | es_ES |
dc.description.references | Janicki, S. M., Tsukamoto, T., Salghetti, S. E., Tansey, W. P., Sachidanandam, R., Prasanth, K. V., … Spector, D. L. (2004). From Silencing to Gene Expression. Cell, 116(5), 683-698. doi:10.1016/s0092-8674(04)00171-0 | es_ES |
dc.description.references | Chao, J. A., Patskovsky, Y., Almo, S. C., & Singer, R. H. (2007). Structural basis for the coevolution of a viral RNA–protein complex. Nature Structural & Molecular Biology, 15(1), 103-105. doi:10.1038/nsmb1327 | es_ES |
dc.description.references | Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., & Long, R. M. (1998). Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 2(4), 437-445. doi:10.1016/s1097-2765(00)80143-4 | es_ES |
dc.description.references | Campbell, P. D., Chao, J. A., Singer, R. H., & Marlow, F. L. (2015). Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development. doi:10.1242/dev.118968 | es_ES |
dc.description.references | Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell, 123(6), 1025-1036. doi:10.1016/j.cell.2005.09.031 | es_ES |
dc.description.references | Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., & Singer, R. H. (2011). Real-Time Observation of Transcription Initiation and Elongation on an Endogenous Yeast Gene. Science, 332(6028), 475-478. doi:10.1126/science.1202142 | es_ES |
dc.description.references | Chubb, J. R., Trcek, T., Shenoy, S. M., & Singer, R. H. (2006). Transcriptional Pulsing of a Developmental Gene. Current Biology, 16(10), 1018-1025. doi:10.1016/j.cub.2006.03.092 | es_ES |
dc.description.references | Garcia, H. G., Tikhonov, M., Lin, A., & Gregor, T. (2013). Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning. Current Biology, 23(21), 2140-2145. doi:10.1016/j.cub.2013.08.054 | es_ES |
dc.description.references | Xu, H., Wang, J., Liang, Y., Fu, Y., Li, S., Huang, J., … Chen, B. (2020). TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Research, 48(22), e127-e127. doi:10.1093/nar/gkaa906 | es_ES |
dc.description.references | Niedenthal, R. K., Riles, L., Johnston, M., & Hegemann, J. H. (1996). Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast, 12(8), 773-786. doi:10.1002/(sici)1097-0061(19960630)12:8<773::aid-yea972>3.0.co;2-l | es_ES |
dc.description.references | Plautz, J. D., Day, R. N., Dailey, G. M., Welsh, S. B., Hall, J. C., Halpain, S., & Kay, S. A. (1996). Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 173(1), 83-87. doi:10.1016/0378-1119(95)00700-8 | es_ES |
dc.description.references | Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green Fluorescent Protein as a Marker for Gene Expression. Science, 263(5148), 802-805. doi:10.1126/science.8303295 | es_ES |
dc.description.references | Longo, D., & Hasty, J. (2006). Dynamics of single‐cell gene expression. Molecular Systems Biology, 2(1), 64. doi:10.1038/msb4100110 | es_ES |
dc.description.references | Zou, F., & Bai, L. (2019). Using time-lapse fluorescence microscopy to study gene regulation. Methods, 159-160, 138-145. doi:10.1016/j.ymeth.2018.12.010 | es_ES |
dc.description.references | Han, J., Xia, A., Huang, Y., Ni, L., Chen, W., Jin, Z., … Jin, F. (2019). Simultaneous Visualization of Multiple Gene Expression in Single Cells Using an Engineered Multicolor Reporter Toolbox and Approach of Spectral Crosstalk Correction. ACS Synthetic Biology, 8(11), 2536-2546. doi:10.1021/acssynbio.9b00223 | es_ES |
dc.description.references | Mateus, C., & Avery, S. V. (2000). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 16(14), 1313-1323. doi:10.1002/1097-0061(200010)16:14<1313::aid-yea626>3.0.co;2-o | es_ES |
dc.description.references | Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., … Kain, S. R. (1998). Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter. Journal of Biological Chemistry, 273(52), 34970-34975. doi:10.1074/jbc.273.52.34970 | es_ES |
dc.description.references | Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjørn, S. P., Givskov, M., & Molin, S. (1998). New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 64(6), 2240-2246. doi:10.1128/aem.64.6.2240-2246.1998 | es_ES |
dc.description.references | He, L., Binari, R., Huang, J., Falo-Sanjuan, J., & Perrimon, N. (2019). In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. eLife, 8. doi:10.7554/elife.46181 | es_ES |
dc.description.references | Allen, M. S., Wilgus, J. R., Chewning, C. S., Sayler, G. S., & Simpson, M. L. (2006). A destabilized bacterial luciferase for dynamic gene expression studies. Systems and Synthetic Biology, 1(1), 3-9. doi:10.1007/s11693-006-9001-5 | es_ES |
dc.description.references | Yasunaga, M., Murotomi, K., Abe, H., Yamazaki, T., Nishii, S., Ohbayashi, T., … Nakajima, Y. (2015). Highly sensitive luciferase reporter assay using a potent destabilization sequence of calpain 3. Journal of Biotechnology, 194, 115-123. doi:10.1016/j.jbiotec.2014.12.004 | es_ES |
dc.description.references | Leclerc, G. M., Boockfor, F. R., Faught, W. J., & Frawley, L. S. (2000). Development of a Destabilized Firefly Luciferase Enzyme for Measurement of Gene Expression. BioTechniques, 29(3), 590-601. doi:10.2144/00293rr02 | es_ES |
dc.description.references | Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905 | es_ES |
dc.description.references | Robertson, J. B., Stowers, C. C., Boczko, E., & Hirschie Johnson, C. (2008). Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proceedings of the National Academy of Sciences, 105(46), 17988-17993. doi:10.1073/pnas.0809482105 | es_ES |
dc.description.references | Deng, L., Sugiura, R., Takeuchi, M., Suzuki, M., Ebina, H., Takami, T., … Kuno, T. (2006). Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast. Molecular Biology of the Cell, 17(11), 4790-4800. doi:10.1091/mbc.e06-06-0526 | es_ES |
dc.description.references | Mazo-Vargas, A., Park, H., Aydin, M., & Buchler, N. E. (2014). Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Molecular Biology of the Cell, 25(22), 3699-3708. doi:10.1091/mbc.e14-07-1187 | es_ES |
dc.description.references | Liu, Z., & Tjian, R. (2018). Visualizing transcription factor dynamics in living cells. Journal of Cell Biology, 217(4), 1181-1191. doi:10.1083/jcb.201710038 | es_ES |
dc.description.references | Jin, X., Hapsari, N. D., Lee, S., & Jo, K. (2020). DNA binding fluorescent proteins as single-molecule probes. The Analyst, 145(12), 4079-4095. doi:10.1039/d0an00218f | es_ES |
dc.description.references | Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13 | es_ES |
dc.description.references | Pascual-Ahuir, A., González-Cantó, E., Juyoux, P., Pable, J., Poveda-Huertes, D., Saiz-Balbastre, S., … Proft, M. (2019). Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1862(4), 457-471. doi:10.1016/j.bbagrm.2019.02.009 | es_ES |
dc.description.references | Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851 | es_ES |
dc.description.references | Paliwal, S., Iglesias, P. A., Campbell, K., Hilioti, Z., Groisman, A., & Levchenko, A. (2007). MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 446(7131), 46-51. doi:10.1038/nature05561 | es_ES |
dc.description.references | Zhang, Q., Yoon, Y., Yu, Y., Parnell, E. J., Garay, J. A. R., Mwangi, M. M., … Bai, L. (2013). Stochastic expression and epigenetic memory at the yeastHOpromoter. Proceedings of the National Academy of Sciences, 110(34), 14012-14017. doi:10.1073/pnas.1306113110 | es_ES |
dc.description.references | Gutin, J., Joseph‐Strauss, D., Sadeh, A., Shalom, E., & Friedman, N. (2019). Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Molecular Systems Biology, 15(8). doi:10.15252/msb.20198939 | es_ES |
dc.description.references | Rajkumar, A. S., Liu, G., Bergenholm, D., Arsovska, D., Kristensen, M., Nielsen, J., … Keasling, J. D. (2016). Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 44(17), e136-e136. doi:10.1093/nar/gkw553 | es_ES |
dc.description.references | Duveau, F., Yuan, D. C., Metzger, B. P. H., Hodgins-Davis, A., & Wittkopp, P. J. (2017). Effects of mutation and selection on plasticity of a promoter activity inSaccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 114(52), E11218-E11227. doi:10.1073/pnas.1713960115 | es_ES |
dc.description.references | Redden, H., Morse, N., & Alper, H. S. (2014). The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Research, n/a-n/a. doi:10.1111/1567-1364.12188 | es_ES |
dc.description.references | Brouwer, I., & Lenstra, T. L. (2019). Visualizing transcription: key to understanding gene expression dynamics. Current Opinion in Chemical Biology, 51, 122-129. doi:10.1016/j.cbpa.2019.05.031 | es_ES |
dc.description.references | Rodriguez, J., & Larson, D. R. (2020). Transcription in Living Cells: Molecular Mechanisms of Bursting. Annual Review of Biochemistry, 89(1), 189-212. doi:10.1146/annurev-biochem-011520-105250 | es_ES |
dc.description.references | Tunnacliffe, E., & Chubb, J. R. (2020). What Is a Transcriptional Burst? Trends in Genetics, 36(4), 288-297. doi:10.1016/j.tig.2020.01.003 | es_ES |
dc.description.references | Hornung, G., Bar-Ziv, R., Rosin, D., Tokuriki, N., Tawfik, D. S., Oren, M., & Barkai, N. (2012). Noise-mean relationship in mutated promoters. Genome Research, 22(12), 2409-2417. doi:10.1101/gr.139378.112 | es_ES |
dc.description.references | Dadiani, M., van Dijk, D., Segal, B., Field, Y., Ben-Artzi, G., Raveh-Sadka, T., … Segal, E. (2013). Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Research, 23(6), 966-976. doi:10.1101/gr.149096.112 | es_ES |
dc.description.references | Raveh-Sadka, T., Levo, M., Shabi, U., Shany, B., Keren, L., Lotan-Pompan, M., … Segal, E. (2012). Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nature Genetics, 44(7), 743-750. doi:10.1038/ng.2305 | es_ES |
dc.description.references | Van Dijk, D., Sharon, E., Lotan-Pompan, M., Weinberger, A., Segal, E., & Carey, L. B. (2016). Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research, 27(1), 87-94. doi:10.1101/gr.212316.116 | es_ES |
dc.description.references | Mehta, G. D., Ball, D. A., Eriksson, P. R., Chereji, R. V., Clark, D. J., McNally, J. G., & Karpova, T. S. (2018). Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Molecular Cell, 72(5), 875-887.e9. doi:10.1016/j.molcel.2018.09.009 | es_ES |
dc.description.references | Ball, D. A., Mehta, G. D., Salomon-Kent, R., Mazza, D., Morisaki, T., Mueller, F., … Karpova, T. S. (2016). Single molecule tracking of Ace1p in Saccharomyces cerevisiae defines a characteristic residence time for non-specific interactions of transcription factors with chromatin. Nucleic Acids Research, 44(21), e160-e160. doi:10.1093/nar/gkw744 | es_ES |
dc.description.references | Karpova, T. S., Kim, M. J., Spriet, C., Nalley, K., Stasevich, T. J., Kherrouche, Z., … McNally, J. G. (2008). Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter. Science, 319(5862), 466-469. doi:10.1126/science.1150559 | es_ES |
dc.description.references | Donovan, B. T., Huynh, A., Ball, D. A., Patel, H. P., Poirier, M. G., Larson, D. R., … Lenstra, T. L. (2019). Live‐cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. The EMBO Journal, 38(12). doi:10.15252/embj.2018100809 | es_ES |
dc.description.references | Lenstra, T. L., Coulon, A., Chow, C. C., & Larson, D. R. (2015). Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription. Molecular Cell, 60(4), 597-610. doi:10.1016/j.molcel.2015.09.028 | es_ES |
dc.description.references | Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F. E., Zimmer, C., … Darzacq, X. (2014). Transcription Factors Modulate c-Fos Transcriptional Bursts. Cell Reports, 8(1), 75-83. doi:10.1016/j.celrep.2014.05.053 | es_ES |
dc.description.references | Stavreva, D. A., Garcia, D. A., Fettweis, G., Gudla, P. R., Zaki, G. F., Soni, V., … Hager, G. L. (2019). Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Molecular Cell, 75(6), 1161-1177.e11. doi:10.1016/j.molcel.2019.06.042 | es_ES |
dc.description.references | Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., … White, M. R. H. (2004). Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression. Science, 306(5696), 704-708. doi:10.1126/science.1099962 | es_ES |
dc.description.references | Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., & Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genetics, 36(2), 147-150. doi:10.1038/ng1293 | es_ES |
dc.description.references | Izeddin, I., Récamier, V., Bosanac, L., Cissé, I. I., Boudarene, L., Dugast-Darzacq, C., … Darzacq, X. (2014). Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife, 3. doi:10.7554/elife.02230 | es_ES |
dc.description.references | Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., & Naef, F. (2011). Mammalian Genes Are Transcribed with Widely Different Bursting Kinetics. Science, 332(6028), 472-474. doi:10.1126/science.1198817 | es_ES |
dc.description.references | Keller, S. H., Jena, S. G., Yamazaki, Y., & Lim, B. (2020). Regulation of spatiotemporal limits of developmental gene expression via enhancer grammar. Proceedings of the National Academy of Sciences, 117(26), 15096-15103. doi:10.1073/pnas.1917040117 | es_ES |
dc.description.references | Ochiai, H., Hayashi, T., Umeda, M., Yoshimura, M., Harada, A., Shimizu, Y., … Nikaido, I. (2020). Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 6(25). doi:10.1126/sciadv.aaz6699 | es_ES |
dc.description.references | Hoppe, C., Bowles, J. R., Minchington, T. G., Sutcliffe, C., Upadhyai, P., Rattray, M., & Ashe, H. L. (2020). Modulation of the Promoter Activation Rate Dictates the Transcriptional Response to Graded BMP Signaling Levels in the Drosophila Embryo. Developmental Cell, 54(6), 727-741.e7. doi:10.1016/j.devcel.2020.07.007 | es_ES |
dc.description.references | Bakker, R., Mani, M., & Carthew, R. W. (2020). The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. eLife, 9. doi:10.7554/elife.56076 | es_ES |
dc.description.references | Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207-220. doi:10.1038/s41576-018-0089-8 | es_ES |
dc.description.references | Nocetti, N., & Whitehouse, I. (2016). Nucleosome repositioning underlies dynamic gene expression. Genes & Development, 30(6), 660-672. doi:10.1101/gad.274910.115 | es_ES |
dc.description.references | Cosma, M. P., Tanaka, T., & Nasmyth, K. (1999). Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter. Cell, 97(3), 299-311. doi:10.1016/s0092-8674(00)80740-0 | es_ES |
dc.description.references | Govind, C. K., Yoon, S., Qiu, H., Govind, S., & Hinnebusch, A. G. (2005). Simultaneous Recruitment of Coactivators by Gcn4p Stimulates Multiple Steps of Transcription In Vivo. Molecular and Cellular Biology, 25(13), 5626-5638. doi:10.1128/mcb.25.13.5626-5638.2005 | es_ES |
dc.description.references | Biggar, S. R. (1999). Continuous and widespread roles for the Swi-Snf complex in transcription. The EMBO Journal, 18(8), 2254-2264. doi:10.1093/emboj/18.8.2254 | es_ES |
dc.description.references | Rando, O. J., & Winston, F. (2012). Chromatin and Transcription in Yeast. Genetics, 190(2), 351-387. doi:10.1534/genetics.111.132266 | es_ES |
dc.description.references | Shen, C.-H., Leblanc, B. P., Alfieri, J. A., & Clark, D. J. (2001). Remodeling of Yeast CUP1 Chromatin Involves Activator-Dependent Repositioning of Nucleosomes over the Entire Gene and Flanking Sequences. Molecular and Cellular Biology, 21(2), 534-547. doi:10.1128/mcb.21.2.534-547.2001 | es_ES |
dc.description.references | Shen, C.-H., & Clark, D. J. (2001). DNA Sequence Plays a Major Role in Determining Nucleosome Positions in Yeast CUP1 Chromatin. Journal of Biological Chemistry, 276(37), 35209-35216. doi:10.1074/jbc.m104733200 | es_ES |
dc.description.references | Erkina, T. Y., Zou, Y., Freeling, S., Vorobyev, V. I., & Erkine, A. M. (2009). Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Research, 38(5), 1441-1449. doi:10.1093/nar/gkp1130 | es_ES |
dc.description.references | Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y., & Stillman, D. J. (2006). SWI/SNF Binding to the HO Promoter Requires Histone Acetylation and Stimulates TATA-Binding Protein Recruitment. Molecular and Cellular Biology, 26(11), 4095-4110. doi:10.1128/mcb.01849-05 | es_ES |
dc.description.references | Sudarsanam, P. (1999). The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription invivo and is partially redundant with the histone acetyltransferase, Gcn5. The EMBO Journal, 18(11), 3101-3106. doi:10.1093/emboj/18.11.3101 | es_ES |
dc.description.references | Barbaric, S., Luckenbach, T., Schmid, A., Blaschke, D., Hörz, W., & Korber, P. (2007). Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo. Journal of Biological Chemistry, 282(38), 27610-27621. doi:10.1074/jbc.m700623200 | es_ES |
dc.description.references | Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9 | es_ES |
dc.description.references | Lemieux, K., & Gaudreau, L. (2004). Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs, and RNA polymerase II. The EMBO Journal, 23(20), 4040-4050. doi:10.1038/sj.emboj.7600416 | es_ES |
dc.description.references | Rienzo, A., Poveda-Huertes, D., Aydin, S., Buchler, N. E., Pascual-Ahuir, A., & Proft, M. (2015). Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Molecular and Cellular Biology, 35(21), 3669-3683. doi:10.1128/mcb.00729-15 | es_ES |
dc.description.references | Kundu, S., Horn, P. J., & Peterson, C. L. (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes & Development, 21(8), 997-1004. doi:10.1101/gad.1506607 | es_ES |
dc.description.references | Dhasarathy, A., & Kladde, M. P. (2005). Promoter Occupancy Is a Major Determinant of Chromatin Remodeling Enzyme Requirements. Molecular and Cellular Biology, 25(7), 2698-2707. doi:10.1128/mcb.25.7.2698-2707.2005 | es_ES |
dc.description.references | Acar, M., Becskei, A., & van Oudenaarden, A. (2005). Enhancement of cellular memory by reducing stochastic transitions. Nature, 435(7039), 228-232. doi:10.1038/nature03524 | es_ES |
dc.description.references | Vanacloig-Pedros, E., Lozano-Pérez, C., Alarcón, B., Pascual-Ahuir, A., & Proft, M. (2019). Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast. Journal of Biological Chemistry, 294(35), 12933-12946. doi:10.1074/jbc.ra119.009291 | es_ES |
dc.description.references | Thakur, J. K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., … Näär, A. M. (2008). A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 452(7187), 604-609. doi:10.1038/nature06836 | es_ES |
dc.description.references | Hao, N., Budnik, B. A., Gunawardena, J., & O’Shea, E. K. (2013). Tunable Signal Processing Through Modular Control of Transcription Factor Translocation. Science, 339(6118), 460-464. doi:10.1126/science.1227299 | es_ES |
dc.description.references | Hansen, A. S., & O’Shea, E. K. (2016). Encoding four gene expression programs in the activation dynamics of a single transcription factor. Current Biology, 26(7), R269-R271. doi:10.1016/j.cub.2016.02.058 | es_ES |
dc.description.references | Hao, N., & O’Shea, E. K. (2011). Signal-dependent dynamics of transcription factor translocation controls gene expression. Nature Structural & Molecular Biology, 19(1), 31-39. doi:10.1038/nsmb.2192 | es_ES |
dc.description.references | Babazadeh, R., Lahtvee, P.-J., Adiels, C. B., Goksör, M., Nielsen, J. B., & Hohmann, S. (2017). The yeast osmostress response is carbon source dependent. Scientific Reports, 7(1). doi:10.1038/s41598-017-01141-4 | es_ES |
dc.description.references | Vanacloig-Pedros, E., Bets-Plasencia, C., Pascual-Ahuir, A., & Proft, M. (2015). Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation. Journal of Biological Chemistry, 290(16), 10163-10175. doi:10.1074/jbc.m115.637264 | es_ES |
dc.description.references | Nikopoulou, C., Parekh, S., & Tessarz, P. (2019). Ageing and sources of transcriptional heterogeneity. Biological Chemistry, 400(7), 867-878. doi:10.1515/hsz-2018-0449 | es_ES |
dc.description.references | Feser, J., Truong, D., Das, C., Carson, J. J., Kieft, J., Harkness, T., & Tyler, J. K. (2010). Elevated Histone Expression Promotes Life Span Extension. Molecular Cell, 39(5), 724-735. doi:10.1016/j.molcel.2010.08.015 | es_ES |
dc.description.references | Hu, Z., Chen, K., Xia, Z., Chavez, M., Pal, S., Seol, J.-H., … Tyler, J. K. (2014). Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes & Development, 28(4), 396-408. doi:10.1101/gad.233221.113 | es_ES |
dc.description.references | Sen, P., Dang, W., Donahue, G., Dai, J., Dorsey, J., Cao, X., … Berger, S. L. (2015). H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes & Development, 29(13), 1362-1376. doi:10.1101/gad.263707.115 | es_ES |
dc.description.references | Feser, J., & Tyler, J. (2010). Chromatin structure as a mediator of aging. FEBS Letters, 585(13), 2041-2048. doi:10.1016/j.febslet.2010.11.016 | es_ES |
dc.description.references | Liu, P., Song, R., Elison, G. L., Peng, W., & Acar, M. (2017). Noise reduction as an emergent property of single-cell aging. Nature Communications, 8(1). doi:10.1038/s41467-017-00752-9 | es_ES |
dc.description.references | Işıldak, U., Somel, M., Thornton, J. M., & Dönertaş, H. M. (2020). Temporal changes in the gene expression heterogeneity during brain development and aging. Scientific Reports, 10(1). doi:10.1038/s41598-020-60998-0 | es_ES |
dc.description.references | Wiley, C. D., Flynn, J. M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., … Campisi, J. (2017). Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell, 16(5), 1043-1050. doi:10.1111/acel.12632 | es_ES |
dc.description.references | Enge, M., Arda, H. E., Mignardi, M., Beausang, J., Bottino, R., Kim, S. K., & Quake, S. R. (2017). Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell, 171(2), 321-330.e14. doi:10.1016/j.cell.2017.09.004 | es_ES |
dc.description.references | Bahar, R., Hartmann, C. H., Rodriguez, K. A., Denny, A. D., Busuttil, R. A., Dollé, M. E. T., … Vijg, J. (2006). Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature, 441(7096), 1011-1014. doi:10.1038/nature04844 | es_ES |
dc.description.references | Angelidis, I., Simon, L. M., Fernandez, I. E., Strunz, M., Mayr, C. H., Greiffo, F. R., … Schiller, H. B. (2019). An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nature Communications, 10(1). doi:10.1038/s41467-019-08831-9 | es_ES |
dc.description.references | Koohy, H., Bolland, D. J., Matheson, L. S., Schoenfelder, S., Stellato, C., Dimond, A., … Varga-Weisz, P. D. (2018). Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. Genome Biology, 19(1). doi:10.1186/s13059-018-1489-y | es_ES |
dc.description.references | Bochkis, I. M., Przybylski, D., Chen, J., & Regev, A. (2014). Changes in Nucleosome Occupancy Associated with Metabolic Alterations in Aged Mammalian Liver. Cell Reports, 9(3), 996-1006. doi:10.1016/j.celrep.2014.09.048 | es_ES |
dc.description.references | Cheung, P., Vallania, F., Warsinske, H. C., Donato, M., Schaffert, S., Chang, S. E., … Kuo, A. J. (2018). Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell, 173(6), 1385-1397.e14. doi:10.1016/j.cell.2018.03.079 | es_ES |
dc.description.references | Booth, L. N., & Brunet, A. (2016). The Aging Epigenome. Molecular Cell, 62(5), 728-744. doi:10.1016/j.molcel.2016.05.013 | es_ES |
dc.description.references | Martinez-Jimenez, C. P., Eling, N., Chen, H.-C., Vallejos, C. A., Kolodziejczyk, A. A., Connor, F., … Odom, D. T. (2017). Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science, 355(6332), 1433-1436. doi:10.1126/science.aah4115 | es_ES |
dc.description.references | Frenk, S., & Houseley, J. (2018). Gene expression hallmarks of cellular ageing. Biogerontology, 19(6), 547-566. doi:10.1007/s10522-018-9750-z | es_ES |
dc.description.references | Riera, C. E., Merkwirth, C., De Magalhaes Filho, C. D., & Dillin, A. (2016). Signaling Networks Determining Life Span. Annual Review of Biochemistry, 85(1), 35-64. doi:10.1146/annurev-biochem-060815-014451 | es_ES |
dc.description.references | Guan, Q., Haroon, S., Bravo, D. G., Will, J. L., & Gasch, A. P. (2012). Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae. Genetics, 192(2), 495-505. doi:10.1534/genetics.112.143016 | es_ES |
dc.description.references | Ben Meriem, Z., Khalil, Y., Hersen, P., & Fabre, E. (2019). Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast. Cells, 8(6), 582. doi:10.3390/cells8060582 | es_ES |
dc.description.references | D’Urso, A., & Brickner, J. H. (2016). Epigenetic transcriptional memory. Current Genetics, 63(3), 435-439. doi:10.1007/s00294-016-0661-8 | es_ES |
dc.description.references | Avramova, Z. (2015). Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal, 83(1), 149-159. doi:10.1111/tpj.12832 | es_ES |
dc.description.references | Gialitakis, M., Arampatzi, P., Makatounakis, T., & Papamatheakis, J. (2010). Gamma Interferon-Dependent Transcriptional Memory via Relocalization of a Gene Locus to PML Nuclear Bodies. Molecular and Cellular Biology, 30(8), 2046-2056. doi:10.1128/mcb.00906-09 | es_ES |
dc.description.references | Ding, Y., Liu, N., Virlouvet, L., Riethoven, J.-J., Fromm, M., & Avramova, Z. (2013). Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology, 13(1). doi:10.1186/1471-2229-13-229 | es_ES |
dc.description.references | Liu, N., Ding, Y., Fromm, M., & Avramova, Z. (2014). Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Research, 42(9), 5556-5566. doi:10.1093/nar/gku220 | es_ES |
dc.description.references | Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought «train» transcriptional responses in Arabidopsis. Nature Communications, 3(1). doi:10.1038/ncomms1732 | es_ES |
dc.description.references | Brickner, D. G., Cajigas, I., Fondufe-Mittendorf, Y., Ahmed, S., Lee, P.-C., Widom, J., & Brickner, J. H. (2007). H2A.Z-Mediated Localization of Genes at the Nuclear Periphery Confers Epigenetic Memory of Previous Transcriptional State. PLoS Biology, 5(4), e81. doi:10.1371/journal.pbio.0050081 | es_ES |
dc.description.references | Sood, V., Cajigas, I., D’Urso, A., Light, W. H., & Brickner, J. H. (2017). Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae. Genetics, 206(4), 1895-1907. doi:10.1534/genetics.117.201632 | es_ES |
dc.description.references | Kundu, S., & Peterson, C. L. (2010). Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes. Molecular and Cellular Biology, 30(10), 2330-2340. doi:10.1128/mcb.01675-09 | es_ES |
dc.description.references | Zacharioudakis, I., Gligoris, T., & Tzamarias, D. (2007). A Yeast Catabolic Enzyme Controls Transcriptional Memory. Current Biology, 17(23), 2041-2046. doi:10.1016/j.cub.2007.10.044 | es_ES |
dc.description.references | Lavy, T., Yanagida, H., & Tawfik, D. S. (2015). Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication. Molecular Biology and Evolution, 33(2), 472-477. doi:10.1093/molbev/msv240 | es_ES |
dc.description.references | Sood, V., & Brickner, J. H. (2017). Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species. Current Biology, 27(23), 3591-3602.e3. doi:10.1016/j.cub.2017.10.035 | es_ES |
dc.description.references | D’Urso, A., Takahashi, Y., Xiong, B., Marone, J., Coukos, R., Randise-Hinchliff, C., … Brickner, J. H. (2016). Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife, 5. doi:10.7554/elife.16691 | es_ES |
dc.description.references | Light, W. H., Freaney, J., Sood, V., Thompson, A., D’Urso, A., Horvath, C. M., & Brickner, J. H. (2013). A Conserved Role for Human Nup98 in Altering Chromatin Structure and Promoting Epigenetic Transcriptional Memory. PLoS Biology, 11(3), e1001524. doi:10.1371/journal.pbio.1001524 | es_ES |
dc.description.references | Light, W. H., Brickner, D. G., Brand, V. R., & Brickner, J. H. (2010). Interaction of a DNA Zip Code with the Nuclear Pore Complex Promotes H2A.Z Incorporation and INO1 Transcriptional Memory. Molecular Cell, 40(1), 112-125. doi:10.1016/j.molcel.2010.09.007 | es_ES |
dc.description.references | Fabrizio, P., Garvis, S., & Palladino, F. (2019). Histone Methylation and Memory of Environmental Stress. Cells, 8(4), 339. doi:10.3390/cells8040339 | es_ES |
dc.description.references | Lämke, J., Brzezinka, K., Altmann, S., & Bäurle, I. (2015). A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory. The EMBO Journal, 35(2), 162-175. doi:10.15252/embj.201592593 | es_ES |
dc.description.references | Bevington, S. L., Cauchy, P., Piper, J., Bertrand, E., Lalli, N., Jarvis, R. C., … Cockerill, P. N. (2016). Inducible chromatin priming is associated with the establishment of immunological memory in T cells. The EMBO Journal, 35(5), 515-535. doi:10.15252/embj.201592534 | es_ES |
dc.description.references | To, T. K., & Kim, J. M. (2014). Epigenetic regulation of gene responsiveness in Arabidopsis. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00548 | es_ES |
dc.description.references | Maxwell, C. S., Kruesi, W. S., Core, L. J., Kurhanewicz, N., Waters, C. T., Lewarch, C. L., … Baugh, L. R. (2014). Pol II Docking and Pausing at Growth and Stress Genes in C. elegans. Cell Reports, 6(3), 455-466. doi:10.1016/j.celrep.2014.01.008 | es_ES |
dc.description.references | Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 1183-1186. doi:10.1126/science.1070919 | es_ES |
dc.description.references | Rogers, K. W., & Schier, A. F. (2011). Morphogen Gradients: From Generation to Interpretation. Annual Review of Cell and Developmental Biology, 27(1), 377-407. doi:10.1146/annurev-cellbio-092910-154148 | es_ES |
dc.description.references | Losick, R., & Desplan, C. (2008). Stochasticity and Cell Fate. Science, 320(5872), 65-68. doi:10.1126/science.1147888 | es_ES |
dc.description.references | Natoli, G., Saccani, S., Bosisio, D., & Marazzi, I. (2005). Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nature Immunology, 6(5), 439-445. doi:10.1038/ni1196 | es_ES |
dc.description.references | Kellogg, R. A., & Tay, S. (2015). Noise Facilitates Transcriptional Control under Dynamic Inputs. Cell, 160(3), 381-392. doi:10.1016/j.cell.2015.01.013 | es_ES |
dc.description.references | Wheat, J. C., Sella, Y., Willcockson, M., Skoultchi, A. I., Bergman, A., Singer, R. H., & Steidl, U. (2020). Single-molecule imaging of transcription dynamics in somatic stem cells. Nature, 583(7816), 431-436. doi:10.1038/s41586-020-2432-4 | es_ES |
dc.description.references | Swain, P. S., Elowitz, M. B., & Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy of Sciences, 99(20), 12795-12800. doi:10.1073/pnas.162041399 | es_ES |
dc.description.references | Kærn, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Reviews Genetics, 6(6), 451-464. doi:10.1038/nrg1615 | es_ES |
dc.description.references | Acar, M., Mettetal, J. T., & van Oudenaarden, A. (2008). Stochastic switching as a survival strategy in fluctuating environments. Nature Genetics, 40(4), 471-475. doi:10.1038/ng.110 | es_ES |
dc.description.references | Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial Persistence as a Phenotypic Switch. Science, 305(5690), 1622-1625. doi:10.1126/science.1099390 | es_ES |
dc.description.references | Schmutzer, M., & Wagner, A. (2020). Gene expression noise can promote the fixation of beneficial mutations in fluctuating environments. PLOS Computational Biology, 16(10), e1007727. doi:10.1371/journal.pcbi.1007727 | es_ES |
dc.description.references | Levy, S. F., Ziv, N., & Siegal, M. L. (2012). Bet Hedging in Yeast by Heterogeneous, Age-Correlated Expression of a Stress Protectant. PLoS Biology, 10(5), e1001325. doi:10.1371/journal.pbio.1001325 | es_ES |
dc.description.references | Levy, S. F. (2016). Cellular Heterogeneity: Benefits Besides Bet-Hedging. Current Biology, 26(9), R355-R357. doi:10.1016/j.cub.2016.03.034 | es_ES |
dc.description.references | Gefen, O., & Balaban, N. Q. (2009). The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiology Reviews, 33(4), 704-717. doi:10.1111/j.1574-6976.2008.00156.x | es_ES |
dc.description.references | Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., … Settleman, J. (2010). A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell, 141(1), 69-80. doi:10.1016/j.cell.2010.02.027 | es_ES |
dc.description.references | Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., … Herlyn, M. (2010). A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth. Cell, 141(4), 583-594. doi:10.1016/j.cell.2010.04.020 | es_ES |
dc.description.references | Shaffer, S. M., Dunagin, M. C., Torborg, S. R., Torre, E. A., Emert, B., Krepler, C., … Raj, A. (2017). Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 546(7658), 431-435. doi:10.1038/nature22794 | es_ES |
dc.description.references | Raser, J. M., & O’Shea, E. K. (2004). Control of Stochasticity in Eukaryotic Gene Expression. Science, 304(5678), 1811-1814. doi:10.1126/science.1098641 | es_ES |
dc.description.references | Lidstrom, M. E., & Konopka, M. C. (2010). The role of physiological heterogeneity in microbial population behavior. Nature Chemical Biology, 6(10), 705-712. doi:10.1038/nchembio.436 | es_ES |
dc.description.references | Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S., & Borley, J. (2014). Poised epigenetic states and acquired drug resistance in cancer. Nature Reviews Cancer, 14(11), 747-753. doi:10.1038/nrc3819 | es_ES |
dc.description.references | Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., & Barkai, N. (2006). Noise in protein expression scales with natural protein abundance. Nature Genetics, 38(6), 636-643. doi:10.1038/ng1807 | es_ES |
dc.description.references | Barroso, G. V., Puzovic, N., & Dutheil, J. Y. (2018). The Evolution of Gene-Specific Transcriptional Noise Is Driven by Selection at the Pathway Level. Genetics, 208(1), 173-189. doi:10.1534/genetics.117.300467 | es_ES |
dc.description.references | Newman, J. R. S., Ghaemmaghami, S., Ihmels, J., Breslow, D. K., Noble, M., DeRisi, J. L., & Weissman, J. S. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature, 441(7095), 840-846. doi:10.1038/nature04785 | es_ES |
dc.description.references | Gasch, A. P., Yu, F. B., Hose, J., Escalante, L. E., Place, M., Bacher, R., … McClean, M. N. (2017). Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLOS Biology, 15(12), e2004050. doi:10.1371/journal.pbio.2004050 | es_ES |
dc.description.references | Charlebois, D. A., Abdennur, N., & Kaern, M. (2011). Gene Expression Noise Facilitates Adaptation and Drug Resistance Independently of Mutation. Physical Review Letters, 107(21). doi:10.1103/physrevlett.107.218101 | es_ES |
dc.description.references | Charlebois, D. A. (2015). Effect and evolution of gene expression noise on the fitness landscape. Physical Review E, 92(2). doi:10.1103/physreve.92.022713 | es_ES |
dc.description.references | Jones, D. L., Brewster, R. C., & Phillips, R. (2014). Promoter architecture dictates cell-to-cell variability in gene expression. Science, 346(6216), 1533-1536. doi:10.1126/science.1255301 | es_ES |
dc.description.references | Sanchez, A., & Golding, I. (2013). Genetic Determinants and Cellular Constraints in Noisy Gene Expression. Science, 342(6163), 1188-1193. doi:10.1126/science.1242975 | es_ES |
dc.description.references | Sanchez, A., Choubey, S., & Kondev, J. (2013). Regulation of Noise in Gene Expression. Annual Review of Biophysics, 42(1), 469-491. doi:10.1146/annurev-biophys-083012-130401 | es_ES |
dc.description.references | Sánchez, Á., & Kondev, J. (2008). Transcriptional control of noise in gene expression. Proceedings of the National Academy of Sciences, 105(13), 5081-5086. doi:10.1073/pnas.0707904105 | es_ES |
dc.description.references | Das, D., Dey, S., Brewster, R. C., & Choubey, S. (2017). Effect of transcription factor resource sharing on gene expression noise. PLOS Computational Biology, 13(4), e1005491. doi:10.1371/journal.pcbi.1005491 | es_ES |
dc.description.references | Engl, C., Jovanovic, G., Brackston, R. D., Kotta-Loizou, I., & Buck, M. (2020). The route to transcription initiation determines the mode of transcriptional bursting in E. coli. Nature Communications, 11(1). doi:10.1038/s41467-020-16367-6 | es_ES |
dc.description.references | Brown, C. R., & Boeger, H. (2014). Nucleosomal promoter variation generates gene expression noise. Proceedings of the National Academy of Sciences, 111(50), 17893-17898. doi:10.1073/pnas.1417527111 | es_ES |
dc.description.references | Brown, C. R., Mao, C., Falkovskaia, E., Jurica, M. S., & Boeger, H. (2013). Linking Stochastic Fluctuations in Chromatin Structure and Gene Expression. PLoS Biology, 11(8), e1001621. doi:10.1371/journal.pbio.1001621 | es_ES |
dc.description.references | Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., … Greenleaf, W. J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486-490. doi:10.1038/nature14590 | es_ES |
dc.description.references | Wu, S., Li, K., Li, Y., Zhao, T., Li, T., Yang, Y.-F., & Qian, W. (2017). Independent regulation of gene expression level and noise by histone modifications. PLOS Computational Biology, 13(6), e1005585. doi:10.1371/journal.pcbi.1005585 | es_ES |
dc.description.references | Lagha, M., Bothma, J. P., Esposito, E., Ng, S., Stefanik, L., Tsui, C., … Levine, M. S. (2013). Paused Pol II Coordinates Tissue Morphogenesis in the Drosophila Embryo. Cell, 153(5), 976-987. doi:10.1016/j.cell.2013.04.045 | es_ES |
dc.description.references | Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., … Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology, 33(2), 155-160. doi:10.1038/nbt.3102 | es_ES |
dc.description.references | Battich, N., Stoeger, T., & Pelkmans, L. (2015). Control of Transcript Variability in Single Mammalian Cells. Cell, 163(7), 1596-1610. doi:10.1016/j.cell.2015.11.018 | es_ES |
dc.description.references | Ansel, J., Bottin, H., Rodriguez-Beltran, C., Damon, C., Nagarajan, M., Fehrmann, S., … Yvert, G. (2008). Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait. PLoS Genetics, 4(4), e1000049. doi:10.1371/journal.pgen.1000049 | es_ES |
dc.description.references | You, S.-T., Jhou, Y.-T., Kao, C.-F., & Leu, J.-Y. (2019). Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. PLOS Biology, 17(10), e3000433. doi:10.1371/journal.pbio.3000433 | es_ES |