Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez Arjona, Isabel | es_ES |
dc.contributor.author | Godinho, L. | es_ES |
dc.contributor.author | Espinosa Roselló, Víctor | es_ES |
dc.date.accessioned | 2021-07-17T03:34:45Z | |
dc.date.available | 2021-07-17T03:34:45Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 1054-3139 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169420 | |
dc.description.abstract | [EN] The method of fundamental solutions has been applied to evaluate the influence of fish models geometrical features on the target strength (TS) directivity and TS frequency response of swimbladdered fish. Simplified models were considered for two fish species: gilt-head sea bream (Sparus aurata, Linnaeus 1758) and Atlantic salmon (Salmo salar, Linnaeus 1758), and different geometrical details of their morphology were studied, such as backbone presence, and its curvature or the inclusion of vertebrae modulation. Swimbladder shape and tilt, together with the inclusion of backbone (and its realistic curvature) for dorsal measurements were the most important features for proper estimation of mean TS. The estimation of mean TS is considered including the effect of fish tilt, the echosounder frequency, and the fish-to-transducer distance. | es_ES |
dc.description.sponsorship | This work received funding from ACUSTUNA project ref. CTM2015-70446-R (MINECO/ERDF, EU). LG acknowledges the support by FCT-Fundacao para a Ciencia e a Tecnologia, I.P., within the scope of the research unit "Institute for sustainability and innovation in structural engineering-ISISE" (UIDP/04029/2020) and of Regional Operational Programme CENTRO2020, within the scope of the project CENTRO-01-0145-FEDER000006 (SUSpENsE). IP-A and VE acknowledge the financial support of Generalitat Valenciana by grants BEST/2018/119 and BEST/2019/008. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | ICES Journal of Marine Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Backbone | es_ES |
dc.subject | Fisheries acoustics | es_ES |
dc.subject | Fish biomass estimation | es_ES |
dc.subject | Numerical simulation | es_ES |
dc.subject | Swimbladder | es_ES |
dc.subject | Target strength | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/icesjms/fsaa160 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2015-70446-R/ES/ACUSTICA Y BIOMETRIA DEL ATUN ROJO (THUNNUS THYNNUS) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//UIDP%2F04029%2F2020/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FEDER/Programa Operacional Centro 2020/CENTRO-01-0145-FEDER-000006/EU/SUSpENsE Sustainable built Environment under Natural Hazards and Extreme Events/SUSpENsE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//BEST%2F2018%2F119/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//BEST%2F2019%2F008/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Pérez Arjona, I.; Godinho, L.; Espinosa Roselló, V. (2020). Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish. ICES Journal of Marine Science. 77(7-8):2870-2881. https://doi.org/10.1093/icesjms/fsaa160 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/icesjms/fsaa160 | es_ES |
dc.description.upvformatpinicio | 2870 | es_ES |
dc.description.upvformatpfin | 2881 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 77 | es_ES |
dc.description.issue | 7-8 | es_ES |
dc.relation.pasarela | S\423499 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. doi:10.1007/978-0-387-78365-9 | es_ES |
dc.description.references | BLAXTER, J. H. S., & TYTLER, P. (1978). Physiology and Function of the Swimbladder. Advances in Comparative Physiology and Biochemistry Volume 7, 311-367. doi:10.1016/b978-0-12-011507-5.50010-0 | es_ES |
dc.description.references | Boyra, G., Moreno, G., Sobradillo, B., Pérez-Arjona, I., Sancristobal, I., & Demer, D. A. (2018). Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES Journal of Marine Science, 75(5), 1790-1802. doi:10.1093/icesjms/fsy041 | es_ES |
dc.description.references | Clay, C. S., & Horne, J. K. (1994). Acoustic models of fish: The Atlantic cod (Gadus morhua). The Journal of the Acoustical Society of America, 96(3), 1661-1668. doi:10.1121/1.410245 | es_ES |
dc.description.references | Costa, E. G. d. A., Godinho, L. M. C., Santiago, J. A. F., Mansur, W. J., & Peters, F. C. (2019). Application of the method of fundamental solutions to predict the acoustic performance of T-shaped thin barriers. Engineering Analysis with Boundary Elements, 99, 142-156. doi:10.1016/j.enganabound.2018.11.009 | es_ES |
dc.description.references | COSTA, E. G. A., GODINHO, L., PEREIRA, A., & SANTIAGO, J. A. F. (2012). PREDICTION OF ACOUSTIC WAVE PROPAGATION IN A SHALLOW WATER CONFIGURATION USING THE METHOD OF FUNDAMENTAL SOLUTIONS. Journal of Computational Acoustics, 20(04), 1250013. doi:10.1142/s0218396x12500130 | es_ES |
dc.description.references | Do, M. A., & Surti, A. M. (1990). Estimation of dorsal aspect target strength of deep‐water fish using a simple model of swimbladder backscattering. The Journal of the Acoustical Society of America, 87(4), 1588-1596. doi:10.1121/1.399406 | es_ES |
dc.description.references | Fairweather, G., Karageorghis, A., & Martin, P. A. (2003). The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, 27(7), 759-769. doi:10.1016/s0955-7997(03)00017-1 | es_ES |
dc.description.references | Fässler, S. M. M., Gorska, N., Ona, E., & Fernandes, P. G. (2008). Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fisheries Research, 92(2-3), 314-321. doi:10.1016/j.fishres.2008.01.013 | es_ES |
dc.description.references | Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. The Journal of the Acoustical Society of America, 67(6), 2084-2089. doi:10.1121/1.384452 | es_ES |
dc.description.references | Foote, K. G. (1980). Averaging of fish target strength functions. The Journal of the Acoustical Society of America, 67(2), 504-515. doi:10.1121/1.383915 | es_ES |
dc.description.references | Forland, T. N., Hobæk, H., Ona, E., & Korneliussen, R. J. (2014). Broad bandwidth acoustic backscattering from sandeel—measurements and finite element simulations. ICES Journal of Marine Science, 71(7), 1894-1903. doi:10.1093/icesjms/fsu010 | es_ES |
dc.description.references | Francis, D. T. I., & Foote, K. G. (2003). Depth-dependent target strengths of gadoids by the boundary-element method. The Journal of the Acoustical Society of America, 114(6), 3136-3146. doi:10.1121/1.1619982 | es_ES |
dc.description.references | Furusawa, M. (1988). Prolate spheroidal models for predicting general trends of fish target strength. Journal of the Acoustical Society of Japan (E), 9(1), 13-24. doi:10.1250/ast.9.13 | es_ES |
dc.description.references | Gastauer, S., Scoulding, B., Fässler, S. M. M., Benden, D. P. L. D., & Parsons, M. (2016). Target strength estimates of red emperor (Lutjanus sebae) with Bayesian parameter calibration. Aquatic Living Resources, 29(3), 301. doi:10.1051/alr/2016024 | es_ES |
dc.description.references | Gauthier, S., & Horne, J. K. (2004). Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models. Canadian Journal of Fisheries and Aquatic Sciences, 61(10), 1839-1850. doi:10.1139/f04-117 | es_ES |
dc.description.references | Godinho, L., Amado-Mendes, P., Carbajo, J., & Ramis-Soriano, J. (2015). 3D numerical modelling of acoustic horns using the method of fundamental solutions. Engineering Analysis with Boundary Elements, 51, 64-73. doi:10.1016/j.enganabound.2014.09.013 | es_ES |
dc.description.references | GODINHO, L. M. C., COSTA, E. G. A., PEREIRA, A. S. C., & SANTIAGO, J. A. F. (2012). SOME OBSERVATIONS ON THE BEHAVIOR OF THE METHOD OF FUNDAMENTAL SOLUTIONS IN 3D ACOUSTIC PROBLEMS. International Journal of Computational Methods, 09(04), 1250049. doi:10.1142/s0219876212500491 | es_ES |
dc.description.references | Gorska, N., & Ona, E. (2003). Modelling the acoustic effect of swimbladder compression in herring. ICES Journal of Marine Science, 60(3), 548-554. doi:10.1016/s1054-3139(03)00050-x | es_ES |
dc.description.references | Gorska, N., Korneliussen, R. J., & Ona, E. (2007). Acoustic backscatter by schools of adult Atlantic mackerel. ICES Journal of Marine Science, 64(6), 1145-1151. doi:10.1093/icesjms/fsm094 | es_ES |
dc.description.references | Gorska, N., Ona, E., & Korneliussen, R. (2005). Acoustic backscattering by Atlantic mackerel as being representative of fish that lack a swimbladder. Backscattering by individual fish. ICES Journal of Marine Science, 62(5), 984-995. doi:10.1016/j.icesjms.2005.03.010 | es_ES |
dc.description.references | Hazen, E. L., & Horne, J. K. (2004). Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES Journal of Marine Science, 61(3), 363-377. doi:10.1016/j.icesjms.2004.01.005 | es_ES |
dc.description.references | Horne, J. K. (2000). Acoustic approaches to remote species identification: a review. Fisheries Oceanography, 9(4), 356-371. doi:10.1046/j.1365-2419.2000.00143.x | es_ES |
dc.description.references | Horne, J. K. (2003). The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science, 60(5), 1063-1074. doi:10.1016/s1054-3139(03)00114-0 | es_ES |
dc.description.references | Jech, J. M. (2011). Interpretation of multi-frequency acoustic data: Effects of fish orientation. The Journal of the Acoustical Society of America, 129(1), 54-63. doi:10.1121/1.3514382 | es_ES |
dc.description.references | Jech, J. M., Horne, J. K., Chu, D., Demer, D. A., Francis, D. T. I., Gorska, N., … Sawada, K. (2015). Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. The Journal of the Acoustical Society of America, 138(6), 3742-3764. doi:10.1121/1.4937607 | es_ES |
dc.description.references | Kloser, R. ., & Horne, J. . (2003). Characterizing uncertainty in target-strength measurements of a deepwater fish: orange roughy (Hoplostethus atlanticus). ICES Journal of Marine Science, 60(3), 516-523. doi:10.1016/s1054-3139(03)00048-1 | es_ES |
dc.description.references | Knudsen, F. R., Fosseidengen, J. E., Oppedal, F., Karlsen, Ø., & Ona, E. (2004). Hydroacoustic monitoring of fish in sea cages: target strength (TS) measurements on Atlantic salmon (Salmo salar). Fisheries Research, 69(2), 205-209. doi:10.1016/j.fishres.2004.05.008 | es_ES |
dc.description.references | Kondapalli, P. S., Shippy, D. J., & Fairweather, G. (1992). Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. The Journal of the Acoustical Society of America, 91(4), 1844-1854. doi:10.1121/1.403714 | es_ES |
dc.description.references | Macaulay, G. J., Peña, H., Fässler, S. M. M., Pedersen, G., & Ona, E. (2013). Accuracy of the Kirchhoff-Approximation and Kirchhoff-Ray-Mode Fish Swimbladder Acoustic Scattering Models. PLoS ONE, 8(5), e64055. doi:10.1371/journal.pone.0064055 | es_ES |
dc.description.references | MacLennan, D. N. (1990). Acoustical measurement of fish abundance. The Journal of the Acoustical Society of America, 87(1), 1-15. doi:10.1121/1.399285 | es_ES |
dc.description.references | Mauro, M., Pérez-Arjona, I., Perez, E. J. B., Ceraulo, M., Bou-Cabo, M., Benson, T., … Buscaino, G. (2020). The effect of low frequency noise on the behaviour of juvenile Sparus aurata. The Journal of the Acoustical Society of America, 147(6), 3795-3807. doi:10.1121/10.0001255 | es_ES |
dc.description.references | Nesse, T. L., Hobæk, H., & Korneliussen, R. J. (2009). Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. ICES Journal of Marine Science, 66(6), 1169-1175. doi:10.1093/icesjms/fsp087 | es_ES |
dc.description.references | Okumura, T., Masuya, T., Takao, Y., & Sawada, K. (2003). Acoustic scattering by an arbitrarily shaped body: an application of the boundary-element method. ICES Journal of Marine Science, 60(3), 563-570. doi:10.1016/s1054-3139(03)00060-2 | es_ES |
dc.description.references | Ona, E. (1990). Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the United Kingdom, 70(1), 107-127. doi:10.1017/s002531540003424x | es_ES |
dc.description.references | Ona, E. (2003). An expanded target-strength relationship for herring. ICES Journal of Marine Science, 60(3), 493-499. doi:10.1016/s1054-3139(03)00031-6 | es_ES |
dc.description.references | Peña, H., & Foote, K. G. (2008). Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES Journal of Marine Science, 65(9), 1751-1761. doi:10.1093/icesjms/fsn190 | es_ES |
dc.description.references | Pérez-Arjona, I., Godinho, L. M. C., & Espinosa, V. (2018). Numerical Simulation of Target Strength Measurements from Near to Far Field of Fish Using the Method of Fundamental Solutions. Acta Acustica united with Acustica, 104(1), 25-38. doi:10.3813/aaa.919142 | es_ES |
dc.description.references | Prestinicola, L., Boglione, C., Makridis, P., Spanò, A., Rimatori, V., Palamara, E., … Cataudella, S. (2013). Environmental Conditioning of Skeletal Anomalies Typology and Frequency in Gilthead Seabream (Sparus aurata L., 1758) Juveniles. PLoS ONE, 8(2), e55736. doi:10.1371/journal.pone.0055736 | es_ES |
dc.description.references | Reeder, D. B., Jech, J. M., & Stanton, T. K. (2004). Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling. The Journal of the Acoustical Society of America, 116(2), 747-761. doi:10.1121/1.1648318 | es_ES |
dc.description.references | Sawada, K., Takahashi, H., Abe, K., Ichii, T., Watanabe, K., & Takao, Y. (2009). Target-strength, length, and tilt-angle measurements of Pacific saury (Cololabis saira) and Japanese anchovy (Engraulis japonicus) using an acoustic-optical system. ICES Journal of Marine Science, 66(6), 1212-1218. doi:10.1093/icesjms/fsp079 | es_ES |
dc.description.references | Soliveres, E., Poveda, P., Estruch, V. D., Pérez-Arjona, I., Puig, V., Ordóñez, P., … Espinosa, V. (2017). Monitoring fish weight using pulse-echo waveform metrics. Aquacultural Engineering, 77, 125-131. doi:10.1016/j.aquaeng.2017.04.002 | es_ES |
dc.description.references | Solstorm, F., Solstorm, D., Oppedal, F., & Fjelldal, P. G. (2016). The vertebral column and exercise in Atlantic salmon — Regional effects. Aquaculture, 461, 9-16. doi:10.1016/j.aquaculture.2016.04.019 | es_ES |
dc.description.references | Stanton, T. K. (1989). Simple approximate formulas for backscattering of sound by spherical and elongated objects. The Journal of the Acoustical Society of America, 86(4), 1499-1510. doi:10.1121/1.398711 | es_ES |
dc.description.references | Yasuma, H., Sawada, K., Takao, Y., Miyashita, K., & Aoki, I. (2009). Swimbladder condition and target strength of myctophid fish in the temperate zone of the Northwest Pacific. ICES Journal of Marine Science, 67(1), 135-144. doi:10.1093/icesjms/fsp218 | es_ES |
dc.description.references | Ytteborg, E., Baeverfjord, G., Torgersen, J., Hjelde, K., & Takle, H. (2010). Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar). BMC Physiology, 10(1). doi:10.1186/1472-6793-10-12 | es_ES |
dc.subject.ods | 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible | es_ES |