- -

Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez Arjona, Isabel es_ES
dc.contributor.author Godinho, L. es_ES
dc.contributor.author Espinosa Roselló, Víctor es_ES
dc.date.accessioned 2021-07-17T03:34:45Z
dc.date.available 2021-07-17T03:34:45Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 1054-3139 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169420
dc.description.abstract [EN] The method of fundamental solutions has been applied to evaluate the influence of fish models geometrical features on the target strength (TS) directivity and TS frequency response of swimbladdered fish. Simplified models were considered for two fish species: gilt-head sea bream (Sparus aurata, Linnaeus 1758) and Atlantic salmon (Salmo salar, Linnaeus 1758), and different geometrical details of their morphology were studied, such as backbone presence, and its curvature or the inclusion of vertebrae modulation. Swimbladder shape and tilt, together with the inclusion of backbone (and its realistic curvature) for dorsal measurements were the most important features for proper estimation of mean TS. The estimation of mean TS is considered including the effect of fish tilt, the echosounder frequency, and the fish-to-transducer distance. es_ES
dc.description.sponsorship This work received funding from ACUSTUNA project ref. CTM2015-70446-R (MINECO/ERDF, EU). LG acknowledges the support by FCT-Fundacao para a Ciencia e a Tecnologia, I.P., within the scope of the research unit "Institute for sustainability and innovation in structural engineering-ISISE" (UIDP/04029/2020) and of Regional Operational Programme CENTRO2020, within the scope of the project CENTRO-01-0145-FEDER000006 (SUSpENsE). IP-A and VE acknowledge the financial support of Generalitat Valenciana by grants BEST/2018/119 and BEST/2019/008. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof ICES Journal of Marine Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Backbone es_ES
dc.subject Fisheries acoustics es_ES
dc.subject Fish biomass estimation es_ES
dc.subject Numerical simulation es_ES
dc.subject Swimbladder es_ES
dc.subject Target strength es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/icesjms/fsaa160 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2015-70446-R/ES/ACUSTICA Y BIOMETRIA DEL ATUN ROJO (THUNNUS THYNNUS) es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UIDP%2F04029%2F2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER/Programa Operacional Centro 2020/CENTRO-01-0145-FEDER-000006/EU/SUSpENsE Sustainable built Environment under Natural Hazards and Extreme Events/SUSpENsE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2018%2F119/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2019%2F008/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Pérez Arjona, I.; Godinho, L.; Espinosa Roselló, V. (2020). Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish. ICES Journal of Marine Science. 77(7-8):2870-2881. https://doi.org/10.1093/icesjms/fsaa160 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/icesjms/fsaa160 es_ES
dc.description.upvformatpinicio 2870 es_ES
dc.description.upvformatpfin 2881 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 77 es_ES
dc.description.issue 7-8 es_ES
dc.relation.pasarela S\423499 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. doi:10.1007/978-0-387-78365-9 es_ES
dc.description.references BLAXTER, J. H. S., & TYTLER, P. (1978). Physiology and Function of the Swimbladder. Advances in Comparative Physiology and Biochemistry Volume 7, 311-367. doi:10.1016/b978-0-12-011507-5.50010-0 es_ES
dc.description.references Boyra, G., Moreno, G., Sobradillo, B., Pérez-Arjona, I., Sancristobal, I., & Demer, D. A. (2018). Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES Journal of Marine Science, 75(5), 1790-1802. doi:10.1093/icesjms/fsy041 es_ES
dc.description.references Clay, C. S., & Horne, J. K. (1994). Acoustic models of fish: The Atlantic cod (Gadus morhua). The Journal of the Acoustical Society of America, 96(3), 1661-1668. doi:10.1121/1.410245 es_ES
dc.description.references Costa, E. G. d. A., Godinho, L. M. C., Santiago, J. A. F., Mansur, W. J., & Peters, F. C. (2019). Application of the method of fundamental solutions to predict the acoustic performance of T-shaped thin barriers. Engineering Analysis with Boundary Elements, 99, 142-156. doi:10.1016/j.enganabound.2018.11.009 es_ES
dc.description.references COSTA, E. G. A., GODINHO, L., PEREIRA, A., & SANTIAGO, J. A. F. (2012). PREDICTION OF ACOUSTIC WAVE PROPAGATION IN A SHALLOW WATER CONFIGURATION USING THE METHOD OF FUNDAMENTAL SOLUTIONS. Journal of Computational Acoustics, 20(04), 1250013. doi:10.1142/s0218396x12500130 es_ES
dc.description.references Do, M. A., & Surti, A. M. (1990). Estimation of dorsal aspect target strength of deep‐water fish using a simple model of swimbladder backscattering. The Journal of the Acoustical Society of America, 87(4), 1588-1596. doi:10.1121/1.399406 es_ES
dc.description.references Fairweather, G., Karageorghis, A., & Martin, P. A. (2003). The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, 27(7), 759-769. doi:10.1016/s0955-7997(03)00017-1 es_ES
dc.description.references Fässler, S. M. M., Gorska, N., Ona, E., & Fernandes, P. G. (2008). Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fisheries Research, 92(2-3), 314-321. doi:10.1016/j.fishres.2008.01.013 es_ES
dc.description.references Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. The Journal of the Acoustical Society of America, 67(6), 2084-2089. doi:10.1121/1.384452 es_ES
dc.description.references Foote, K. G. (1980). Averaging of fish target strength functions. The Journal of the Acoustical Society of America, 67(2), 504-515. doi:10.1121/1.383915 es_ES
dc.description.references Forland, T. N., Hobæk, H., Ona, E., & Korneliussen, R. J. (2014). Broad bandwidth acoustic backscattering from sandeel—measurements and finite element simulations. ICES Journal of Marine Science, 71(7), 1894-1903. doi:10.1093/icesjms/fsu010 es_ES
dc.description.references Francis, D. T. I., & Foote, K. G. (2003). Depth-dependent target strengths of gadoids by the boundary-element method. The Journal of the Acoustical Society of America, 114(6), 3136-3146. doi:10.1121/1.1619982 es_ES
dc.description.references Furusawa, M. (1988). Prolate spheroidal models for predicting general trends of fish target strength. Journal of the Acoustical Society of Japan (E), 9(1), 13-24. doi:10.1250/ast.9.13 es_ES
dc.description.references Gastauer, S., Scoulding, B., Fässler, S. M. M., Benden, D. P. L. D., & Parsons, M. (2016). Target strength estimates of red emperor (Lutjanus sebae) with Bayesian parameter calibration. Aquatic Living Resources, 29(3), 301. doi:10.1051/alr/2016024 es_ES
dc.description.references Gauthier, S., & Horne, J. K. (2004). Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models. Canadian Journal of Fisheries and Aquatic Sciences, 61(10), 1839-1850. doi:10.1139/f04-117 es_ES
dc.description.references Godinho, L., Amado-Mendes, P., Carbajo, J., & Ramis-Soriano, J. (2015). 3D numerical modelling of acoustic horns using the method of fundamental solutions. Engineering Analysis with Boundary Elements, 51, 64-73. doi:10.1016/j.enganabound.2014.09.013 es_ES
dc.description.references GODINHO, L. M. C., COSTA, E. G. A., PEREIRA, A. S. C., & SANTIAGO, J. A. F. (2012). SOME OBSERVATIONS ON THE BEHAVIOR OF THE METHOD OF FUNDAMENTAL SOLUTIONS IN 3D ACOUSTIC PROBLEMS. International Journal of Computational Methods, 09(04), 1250049. doi:10.1142/s0219876212500491 es_ES
dc.description.references Gorska, N., & Ona, E. (2003). Modelling the acoustic effect of swimbladder compression in herring. ICES Journal of Marine Science, 60(3), 548-554. doi:10.1016/s1054-3139(03)00050-x es_ES
dc.description.references Gorska, N., Korneliussen, R. J., & Ona, E. (2007). Acoustic backscatter by schools of adult Atlantic mackerel. ICES Journal of Marine Science, 64(6), 1145-1151. doi:10.1093/icesjms/fsm094 es_ES
dc.description.references Gorska, N., Ona, E., & Korneliussen, R. (2005). Acoustic backscattering by Atlantic mackerel as being representative of fish that lack a swimbladder. Backscattering by individual fish. ICES Journal of Marine Science, 62(5), 984-995. doi:10.1016/j.icesjms.2005.03.010 es_ES
dc.description.references Hazen, E. L., & Horne, J. K. (2004). Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES Journal of Marine Science, 61(3), 363-377. doi:10.1016/j.icesjms.2004.01.005 es_ES
dc.description.references Horne, J. K. (2000). Acoustic approaches to remote species identification: a review. Fisheries Oceanography, 9(4), 356-371. doi:10.1046/j.1365-2419.2000.00143.x es_ES
dc.description.references Horne, J. K. (2003). The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science, 60(5), 1063-1074. doi:10.1016/s1054-3139(03)00114-0 es_ES
dc.description.references Jech, J. M. (2011). Interpretation of multi-frequency acoustic data: Effects of fish orientation. The Journal of the Acoustical Society of America, 129(1), 54-63. doi:10.1121/1.3514382 es_ES
dc.description.references Jech, J. M., Horne, J. K., Chu, D., Demer, D. A., Francis, D. T. I., Gorska, N., … Sawada, K. (2015). Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. The Journal of the Acoustical Society of America, 138(6), 3742-3764. doi:10.1121/1.4937607 es_ES
dc.description.references Kloser, R. ., & Horne, J. . (2003). Characterizing uncertainty in target-strength measurements of a deepwater fish: orange roughy (Hoplostethus atlanticus). ICES Journal of Marine Science, 60(3), 516-523. doi:10.1016/s1054-3139(03)00048-1 es_ES
dc.description.references Knudsen, F. R., Fosseidengen, J. E., Oppedal, F., Karlsen, Ø., & Ona, E. (2004). Hydroacoustic monitoring of fish in sea cages: target strength (TS) measurements on Atlantic salmon (Salmo salar). Fisheries Research, 69(2), 205-209. doi:10.1016/j.fishres.2004.05.008 es_ES
dc.description.references Kondapalli, P. S., Shippy, D. J., & Fairweather, G. (1992). Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. The Journal of the Acoustical Society of America, 91(4), 1844-1854. doi:10.1121/1.403714 es_ES
dc.description.references Macaulay, G. J., Peña, H., Fässler, S. M. M., Pedersen, G., & Ona, E. (2013). Accuracy of the Kirchhoff-Approximation and Kirchhoff-Ray-Mode Fish Swimbladder Acoustic Scattering Models. PLoS ONE, 8(5), e64055. doi:10.1371/journal.pone.0064055 es_ES
dc.description.references MacLennan, D. N. (1990). Acoustical measurement of fish abundance. The Journal of the Acoustical Society of America, 87(1), 1-15. doi:10.1121/1.399285 es_ES
dc.description.references Mauro, M., Pérez-Arjona, I., Perez, E. J. B., Ceraulo, M., Bou-Cabo, M., Benson, T., … Buscaino, G. (2020). The effect of low frequency noise on the behaviour of juvenile Sparus aurata. The Journal of the Acoustical Society of America, 147(6), 3795-3807. doi:10.1121/10.0001255 es_ES
dc.description.references Nesse, T. L., Hobæk, H., & Korneliussen, R. J. (2009). Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. ICES Journal of Marine Science, 66(6), 1169-1175. doi:10.1093/icesjms/fsp087 es_ES
dc.description.references Okumura, T., Masuya, T., Takao, Y., & Sawada, K. (2003). Acoustic scattering by an arbitrarily shaped body: an application of the boundary-element method. ICES Journal of Marine Science, 60(3), 563-570. doi:10.1016/s1054-3139(03)00060-2 es_ES
dc.description.references Ona, E. (1990). Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the United Kingdom, 70(1), 107-127. doi:10.1017/s002531540003424x es_ES
dc.description.references Ona, E. (2003). An expanded target-strength relationship for herring. ICES Journal of Marine Science, 60(3), 493-499. doi:10.1016/s1054-3139(03)00031-6 es_ES
dc.description.references Peña, H., & Foote, K. G. (2008). Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES Journal of Marine Science, 65(9), 1751-1761. doi:10.1093/icesjms/fsn190 es_ES
dc.description.references Pérez-Arjona, I., Godinho, L. M. C., & Espinosa, V. (2018). Numerical Simulation of Target Strength Measurements from Near to Far Field of Fish Using the Method of Fundamental Solutions. Acta Acustica united with Acustica, 104(1), 25-38. doi:10.3813/aaa.919142 es_ES
dc.description.references Prestinicola, L., Boglione, C., Makridis, P., Spanò, A., Rimatori, V., Palamara, E., … Cataudella, S. (2013). Environmental Conditioning of Skeletal Anomalies Typology and Frequency in Gilthead Seabream (Sparus aurata L., 1758) Juveniles. PLoS ONE, 8(2), e55736. doi:10.1371/journal.pone.0055736 es_ES
dc.description.references Reeder, D. B., Jech, J. M., & Stanton, T. K. (2004). Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling. The Journal of the Acoustical Society of America, 116(2), 747-761. doi:10.1121/1.1648318 es_ES
dc.description.references Sawada, K., Takahashi, H., Abe, K., Ichii, T., Watanabe, K., & Takao, Y. (2009). Target-strength, length, and tilt-angle measurements of Pacific saury (Cololabis saira) and Japanese anchovy (Engraulis japonicus) using an acoustic-optical system. ICES Journal of Marine Science, 66(6), 1212-1218. doi:10.1093/icesjms/fsp079 es_ES
dc.description.references Soliveres, E., Poveda, P., Estruch, V. D., Pérez-Arjona, I., Puig, V., Ordóñez, P., … Espinosa, V. (2017). Monitoring fish weight using pulse-echo waveform metrics. Aquacultural Engineering, 77, 125-131. doi:10.1016/j.aquaeng.2017.04.002 es_ES
dc.description.references Solstorm, F., Solstorm, D., Oppedal, F., & Fjelldal, P. G. (2016). The vertebral column and exercise in Atlantic salmon — Regional effects. Aquaculture, 461, 9-16. doi:10.1016/j.aquaculture.2016.04.019 es_ES
dc.description.references Stanton, T. K. (1989). Simple approximate formulas for backscattering of sound by spherical and elongated objects. The Journal of the Acoustical Society of America, 86(4), 1499-1510. doi:10.1121/1.398711 es_ES
dc.description.references Yasuma, H., Sawada, K., Takao, Y., Miyashita, K., & Aoki, I. (2009). Swimbladder condition and target strength of myctophid fish in the temperate zone of the Northwest Pacific. ICES Journal of Marine Science, 67(1), 135-144. doi:10.1093/icesjms/fsp218 es_ES
dc.description.references Ytteborg, E., Baeverfjord, G., Torgersen, J., Hjelde, K., & Takle, H. (2010). Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar). BMC Physiology, 10(1). doi:10.1186/1472-6793-10-12 es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem