- -

Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis

Show full item record

Costa-Broseta, Á.; Castillo López Del Toro, MC.; Leon Ramos, J. (2020). Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. International Journal of Molecular Sciences. 21(19):1-13. https://doi.org/10.3390/ijms21197270

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169421

Files in this item

Item Metadata

Title: Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis
Author: Costa-Broseta, Álvaro Castillo López Del Toro, Mª Cruz LEON RAMOS, JOSE
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive ...[+]
Subjects: CRISPR , Cysteine S-nitrosylation , Nitrate assimilation , Nitric oxide , Nitrite reductase , Tyrosine nitration , Plant growth , Ubiquitylation
Copyrigths: Reconocimiento (by)
Source:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms21197270
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ijms21197270
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82945-P/ES/TOLERANCIA AL OXIGENO Y AL OXIDO NITRICO TRAS HIPOXIA EN ARABIDOPSIS/
info:eu-repo/grantAgreement/MINECO//BIO2014-56067-P/ES/CONTROL DE LA PRODUCCION, PERCEPCION Y SEÑALIZACION DE NO POR MODIFICACIONES POSTRADUCCIONALES Y PROTEOLISIS DIRIGIDA POR LA SECUENCIA AMINOTERMINAL/
Thanks:
This research was funded by BIO2014-56067-P and BIO2017-82945-P grants from the Spanish Ministry of Economy, Industry and Competitiveness and Fondo Europeo de Desarrollo Regional (FEDER) funds.
Type: Artículo

References

Solomonson, L. P., & Barber, M. J. (1990). Assimilatory Nitrate Reductase: Functional Properties and Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 225-253. doi:10.1146/annurev.pp.41.060190.001301

Knaff, D. B., & Hirasawa, M. (1991). Ferredoxin-dependent chloroplast enzymes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1056(2), 93-125. doi:10.1016/s0005-2728(05)80277-4

Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944 [+]
Solomonson, L. P., & Barber, M. J. (1990). Assimilatory Nitrate Reductase: Functional Properties and Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 225-253. doi:10.1146/annurev.pp.41.060190.001301

Knaff, D. B., & Hirasawa, M. (1991). Ferredoxin-dependent chloroplast enzymes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1056(2), 93-125. doi:10.1016/s0005-2728(05)80277-4

Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944

Tanaka, S., Ida, S., Irifune, K., Oeda, K., & Morikawa, H. (1994). Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Sequence, 5(1), 57-61. doi:10.3109/10425179409039705

LEA, P. J., & MIFLIN, B. J. (1974). Alternative route for nitrogen assimilation in higher plants. Nature, 251(5476), 614-616. doi:10.1038/251614a0

Gupta, K. J., & Igamberdiev, A. U. (2011). The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion, 11(4), 537-543. doi:10.1016/j.mito.2011.03.005

Rockel, P., Strube, F., Rockel, A., Wildt, J., & Kaiser, W. M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 53(366), 103-110. doi:10.1093/jexbot/53.366.103

Bender, D., & Schwarz, G. (2018). Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Letters, 592(12), 2126-2139. doi:10.1002/1873-3468.13089

Kolbert, Z., Barroso, J. B., Brouquisse, R., Corpas, F. J., Gupta, K. J., Lindermayr, C., … Hancock, J. T. (2019). A forty year journey: The generation and roles of NO in plants. Nitric Oxide, 93, 53-70. doi:10.1016/j.niox.2019.09.006

Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193

Jain, P., & Bhatla, S. C. (2018). Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Functional Plant Biology, 45(2), 70. doi:10.1071/fp16279

Calatrava, V., Chamizo-Ampudia, A., Sanz-Luque, E., Ocaña-Calahorro, F., Llamas, A., Fernandez, E., & Galvan, A. (2017). How Chlamydomonas handles nitrate and the nitric oxide cycle. Journal of Experimental Botany, 68(10), 2593-2602. doi:10.1093/jxb/erw507

De Montaigu, A., Sanz-Luque, E., Galván, A., & Fernández, E. (2010). A Soluble Guanylate Cyclase Mediates Negative Signaling by Ammonium on Expression of Nitrate Reductase in Chlamydomonas  . The Plant Cell, 22(5), 1532-1548. doi:10.1105/tpc.108.062380

Kim, J. Y., Kwon, Y. J., Kim, S.-I., Kim, D. Y., Song, J. T., & Seo, H. S. (2016). Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01161

Castillo, M.-C., Coego, A., Costa-Broseta, Á., & León, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany, 69(21), 5265-5278. doi:10.1093/jxb/ery286

Wang, J., Wang, Y., Lv, Q., Wang, L., Du, J., Bao, F., & He, Y.-K. (2017). Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 488(1), 88-94. doi:10.1016/j.bbrc.2017.05.012

Chen, Z. J., & Sun, L. J. (2009). Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 33(3), 275-286. doi:10.1016/j.molcel.2009.01.014

Thrower, J. S. (2000). Recognition of the polyubiquitin proteolytic signal. The EMBO Journal, 19(1), 94-102. doi:10.1093/emboj/19.1.94

Chu, C.-C., & Li, H. (2018). Developmental regulation of protein import into plastids. Photosynthesis Research, 138(3), 327-334. doi:10.1007/s11120-018-0546-4

Hirasawa, M., Tollin, G., Salamon, Z., & Knaff, D. B. (1994). Transient kinetic and oxidation-reduction studies of spinach ferrodoxin: nitrate oxidoreductase. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1185(3), 336-345. doi:10.1016/0005-2728(94)90249-6

Hirasawa, M., Tripathy, J. N., Somasundaram, R., Johnson, M. K., Bhalla, M., Allen, J. P., & Knaff, D. B. (2009). The Interaction of Spinach Nitrite Reductase with Ferredoxin: A Site-Directed Mutation Study. Molecular Plant, 2(3), 407-415. doi:10.1093/mp/ssn098

Y., M.-G.-T., P., R., T., M., I., Q., M., L., W., K., & J., M.-G. (2002). Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 215(5), 708-715. doi:10.1007/s00425-002-0816-3

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Chiu, J., Tillett, D., Dawes, I. W., & March, P. E. (2008). Site-directed, Ligase-Independent Mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8kb. Journal of Microbiological Methods, 73(2), 195-198. doi:10.1016/j.mimet.2008.02.013

Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., & Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1). doi:10.1186/s13059-015-0715-0

Davenport, S., Le Lay, P., & Sanchez-Tamburrrino, J. P. (2015). Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiology and Biochemistry, 97, 96-107. doi:10.1016/j.plaphy.2015.09.013

Takahashi, M., Sasaki, Y., Ida, S., & Morikawa, H. (2001). Nitrite Reductase Gene Enrichment Improves Assimilation of NO2 in Arabidopsis. Plant Physiology, 126(2), 731-741. doi:10.1104/pp.126.2.731

Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392). doi:10.1126/scisignal.aaa7981

Guo, F.-Q., Okamoto, M., & Crawford, N. M. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record