- -

Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costa-Broseta, Álvaro es_ES
dc.contributor.author Castillo López Del Toro, Mª Cruz es_ES
dc.contributor.author LEON RAMOS, JOSE es_ES
dc.date.accessioned 2021-07-17T03:34:46Z
dc.date.available 2021-07-17T03:34:46Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169421
dc.description.abstract [EN] Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. Because most higher plants including crops have a single NiR, the modulation of its function might represent a relevant target for agrobiotechnological purposes. es_ES
dc.description.sponsorship This research was funded by BIO2014-56067-P and BIO2017-82945-P grants from the Spanish Ministry of Economy, Industry and Competitiveness and Fondo Europeo de Desarrollo Regional (FEDER) funds. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CRISPR es_ES
dc.subject Cysteine S-nitrosylation es_ES
dc.subject Nitrate assimilation es_ES
dc.subject Nitric oxide es_ES
dc.subject Nitrite reductase es_ES
dc.subject Tyrosine nitration es_ES
dc.subject Plant growth es_ES
dc.subject Ubiquitylation es_ES
dc.title Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms21197270 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82945-P/ES/TOLERANCIA AL OXIGENO Y AL OXIDO NITRICO TRAS HIPOXIA EN ARABIDOPSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-56067-P/ES/CONTROL DE LA PRODUCCION, PERCEPCION Y SEÑALIZACION DE NO POR MODIFICACIONES POSTRADUCCIONALES Y PROTEOLISIS DIRIGIDA POR LA SECUENCIA AMINOTERMINAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Costa-Broseta, Á.; Castillo López Del Toro, MC.; Leon Ramos, J. (2020). Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. International Journal of Molecular Sciences. 21(19):1-13. https://doi.org/10.3390/ijms21197270 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms21197270 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 33019636 es_ES
dc.identifier.pmcid PMC7582248 es_ES
dc.relation.pasarela S\433248 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Solomonson, L. P., & Barber, M. J. (1990). Assimilatory Nitrate Reductase: Functional Properties and Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 225-253. doi:10.1146/annurev.pp.41.060190.001301 es_ES
dc.description.references Knaff, D. B., & Hirasawa, M. (1991). Ferredoxin-dependent chloroplast enzymes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1056(2), 93-125. doi:10.1016/s0005-2728(05)80277-4 es_ES
dc.description.references Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944 es_ES
dc.description.references Tanaka, S., Ida, S., Irifune, K., Oeda, K., & Morikawa, H. (1994). Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Sequence, 5(1), 57-61. doi:10.3109/10425179409039705 es_ES
dc.description.references LEA, P. J., & MIFLIN, B. J. (1974). Alternative route for nitrogen assimilation in higher plants. Nature, 251(5476), 614-616. doi:10.1038/251614a0 es_ES
dc.description.references Gupta, K. J., & Igamberdiev, A. U. (2011). The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion, 11(4), 537-543. doi:10.1016/j.mito.2011.03.005 es_ES
dc.description.references Rockel, P., Strube, F., Rockel, A., Wildt, J., & Kaiser, W. M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 53(366), 103-110. doi:10.1093/jexbot/53.366.103 es_ES
dc.description.references Bender, D., & Schwarz, G. (2018). Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Letters, 592(12), 2126-2139. doi:10.1002/1873-3468.13089 es_ES
dc.description.references Kolbert, Z., Barroso, J. B., Brouquisse, R., Corpas, F. J., Gupta, K. J., Lindermayr, C., … Hancock, J. T. (2019). A forty year journey: The generation and roles of NO in plants. Nitric Oxide, 93, 53-70. doi:10.1016/j.niox.2019.09.006 es_ES
dc.description.references Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193 es_ES
dc.description.references Jain, P., & Bhatla, S. C. (2018). Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Functional Plant Biology, 45(2), 70. doi:10.1071/fp16279 es_ES
dc.description.references Calatrava, V., Chamizo-Ampudia, A., Sanz-Luque, E., Ocaña-Calahorro, F., Llamas, A., Fernandez, E., & Galvan, A. (2017). How Chlamydomonas handles nitrate and the nitric oxide cycle. Journal of Experimental Botany, 68(10), 2593-2602. doi:10.1093/jxb/erw507 es_ES
dc.description.references De Montaigu, A., Sanz-Luque, E., Galván, A., & Fernández, E. (2010). A Soluble Guanylate Cyclase Mediates Negative Signaling by Ammonium on Expression of Nitrate Reductase in Chlamydomonas  . The Plant Cell, 22(5), 1532-1548. doi:10.1105/tpc.108.062380 es_ES
dc.description.references Kim, J. Y., Kwon, Y. J., Kim, S.-I., Kim, D. Y., Song, J. T., & Seo, H. S. (2016). Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01161 es_ES
dc.description.references Castillo, M.-C., Coego, A., Costa-Broseta, Á., & León, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany, 69(21), 5265-5278. doi:10.1093/jxb/ery286 es_ES
dc.description.references Wang, J., Wang, Y., Lv, Q., Wang, L., Du, J., Bao, F., & He, Y.-K. (2017). Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 488(1), 88-94. doi:10.1016/j.bbrc.2017.05.012 es_ES
dc.description.references Chen, Z. J., & Sun, L. J. (2009). Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 33(3), 275-286. doi:10.1016/j.molcel.2009.01.014 es_ES
dc.description.references Thrower, J. S. (2000). Recognition of the polyubiquitin proteolytic signal. The EMBO Journal, 19(1), 94-102. doi:10.1093/emboj/19.1.94 es_ES
dc.description.references Chu, C.-C., & Li, H. (2018). Developmental regulation of protein import into plastids. Photosynthesis Research, 138(3), 327-334. doi:10.1007/s11120-018-0546-4 es_ES
dc.description.references Hirasawa, M., Tollin, G., Salamon, Z., & Knaff, D. B. (1994). Transient kinetic and oxidation-reduction studies of spinach ferrodoxin: nitrate oxidoreductase. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1185(3), 336-345. doi:10.1016/0005-2728(94)90249-6 es_ES
dc.description.references Hirasawa, M., Tripathy, J. N., Somasundaram, R., Johnson, M. K., Bhalla, M., Allen, J. P., & Knaff, D. B. (2009). The Interaction of Spinach Nitrite Reductase with Ferredoxin: A Site-Directed Mutation Study. Molecular Plant, 2(3), 407-415. doi:10.1093/mp/ssn098 es_ES
dc.description.references Y., M.-G.-T., P., R., T., M., I., Q., M., L., W., K., & J., M.-G. (2002). Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 215(5), 708-715. doi:10.1007/s00425-002-0816-3 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Chiu, J., Tillett, D., Dawes, I. W., & March, P. E. (2008). Site-directed, Ligase-Independent Mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8kb. Journal of Microbiological Methods, 73(2), 195-198. doi:10.1016/j.mimet.2008.02.013 es_ES
dc.description.references Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., & Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1). doi:10.1186/s13059-015-0715-0 es_ES
dc.description.references Davenport, S., Le Lay, P., & Sanchez-Tamburrrino, J. P. (2015). Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiology and Biochemistry, 97, 96-107. doi:10.1016/j.plaphy.2015.09.013 es_ES
dc.description.references Takahashi, M., Sasaki, Y., Ida, S., & Morikawa, H. (2001). Nitrite Reductase Gene Enrichment Improves Assimilation of NO2 in Arabidopsis. Plant Physiology, 126(2), 731-741. doi:10.1104/pp.126.2.731 es_ES
dc.description.references Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392). doi:10.1126/scisignal.aaa7981 es_ES
dc.description.references Guo, F.-Q., Okamoto, M., & Crawford, N. M. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem