- -

Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer

Mostrar el registro completo del ítem

Garcia-Dominguez, X.; Diretto, G.; Frusciante, S.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer. International Journal of Molecular Sciences. 21(19):1-14. https://doi.org/10.3390/ijms21197116

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169423

Ficheros en el ítem

Metadatos del ítem

Título: Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer
Autor: Garcia-Dominguez, X Diretto, Gianfranco Frusciante, Sarah Vicente Antón, José Salvador Marco-Jiménez, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Although assisted reproduction technologies (ARTs) are recognised as safe, and most of the offspring seem apparently healthy, there is clear evidence that ARTs are associated with changes in the embryo's developmental ...[+]
Palabras clave: Embryo manipulation , Cryopreservation , Stress , Metabolism , Developmental plasticity , Developmental programming
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms21197116
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijms21197116
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F272/
Agradecimientos:
This research was funded by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number AICO/2019/272. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and ...[+]
Tipo: Artículo

References

Rizos, D., Maillo, V., Sánchez-Calabuig, M.-J., & Lonergan, P. (2017). The Consequences of Maternal-Embryonic Cross Talk During the Periconception Period on Subsequent Embryonic Development. Advances in Experimental Medicine and Biology, 69-86. doi:10.1007/978-3-319-62414-3_4

Avilés, M., Gutiérrez-Adán, A., & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? MHR: Basic science of reproductive medicine, 16(12), 896-906. doi:10.1093/molehr/gaq056

Li, S., & Winuthayanon, W. (2017). Oviduct: roles in fertilization and early embryo development. Journal of Endocrinology, 232(1), R1-R26. doi:10.1530/joe-16-0302 [+]
Rizos, D., Maillo, V., Sánchez-Calabuig, M.-J., & Lonergan, P. (2017). The Consequences of Maternal-Embryonic Cross Talk During the Periconception Period on Subsequent Embryonic Development. Advances in Experimental Medicine and Biology, 69-86. doi:10.1007/978-3-319-62414-3_4

Avilés, M., Gutiérrez-Adán, A., & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? MHR: Basic science of reproductive medicine, 16(12), 896-906. doi:10.1093/molehr/gaq056

Li, S., & Winuthayanon, W. (2017). Oviduct: roles in fertilization and early embryo development. Journal of Endocrinology, 232(1), R1-R26. doi:10.1530/joe-16-0302

Wale, P. L., & Gardner, D. K. (2015). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Human Reproduction Update, 22(1), 2-22. doi:10.1093/humupd/dmv034

Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-x

Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034

Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015

Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028

Zacchini, F., Sampino, S., Stankiewicz, A. M., Haaf, T., & Ptak, G. E. (2019). Assessing the epigenetic risks of assisted reproductive technologies: a way forward. The International Journal of Developmental Biology, 63(3-4-5), 217-222. doi:10.1387/ijdb.180402gp

Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970

Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119

Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051

Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023x

Romar, R., Funahashi, H., & Coy, P. (2016). In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years. Theriogenology, 85(1), 125-134. doi:10.1016/j.theriogenology.2015.07.017

Canovas, S., Ivanova, E., Romar, R., García-Martínez, S., Soriano-Úbeda, C., García-Vázquez, F. A., … Coy, P. (2017). DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife, 6. doi:10.7554/elife.23670

Campo, H., García-Domínguez, X., López-Martínez, S., Faus, A., Vicente Antón, J. S., Marco-Jiménez, F., & Cervelló, I. (2019). Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomaterialia, 89, 126-138. doi:10.1016/j.actbio.2019.03.004

Le Saint, C., Crespo, K., Bourdiec, A., Bissonnette, F., Buzaglo, K., Couturier, B., … Kadoch, I. J. (2019). Autologous endometrial cell co-culture improves human embryo development to high-quality blastocysts: a randomized controlled trial. Reproductive BioMedicine Online, 38(3), 321-329. doi:10.1016/j.rbmo.2018.12.039

Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826

Saenz-de-Juano, M. D., Marco-Jiménez, F., Peñaranda, D. S., Joly, T., & Vicente, J. S. (2012). Effects of Slow Freezing Procedure on Late Blastocyst Gene Expression and Survival Rate in Rabbit1. Biology of Reproduction, 87(4). doi:10.1095/biolreprod.112.100677

Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K., & Marco-Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLOS ONE, 10(4), e0125157. doi:10.1371/journal.pone.0125157

Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019

Vicente, J. S., Saenz-de-Juano, M. D., Jiménez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., & Marco-Jiménez, F. (2013). Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology, 67(3), 321-326. doi:10.1016/j.cryobiol.2013.09.165

Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008

Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2014). Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology, 81(7), 988-992. doi:10.1016/j.theriogenology.2014.01.030

Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025

Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804

Gupta, A., Singh, J., Dufort, I., Robert, C., Dias, F. C. F., & Anzar, M. (2017). Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage. PLOS ONE, 12(11), e0187268. doi:10.1371/journal.pone.0187268

García-Domínguez, X., Marco-Jiménez, F., Puigcerver-Barber, M., Más-Pellicer, A., & Vicente, J. S. (2020). The harmful effect of removing the extracellular vitrification medium during embryo cryopreservation using a nylon mesh device in rabbit. Cryobiology, 93, 44-48. doi:10.1016/j.cryobiol.2020.02.013

Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLOS ONE, 11(2), e0148661. doi:10.1371/journal.pone.0148661

Saenz-de-Juano, M. D., Marco-Jiménez, F., & Vicente, J. S. (2016). Embryo transfer manipulation cause gene expression variation in blastocysts that disrupt implantation and offspring rates at birth in rabbit. European Journal of Obstetrics & Gynecology and Reproductive Biology, 207, 50-55. doi:10.1016/j.ejogrb.2016.10.049

Montag, M., Koll, B., Holmes, P., & Ven, H. van der. (2000). Significance of the Number of Embryonic Cells and the State of the Zona Pellucida for Hatching of Mouse Blastocysts In Vitro Versus In Vivo. Biology of Reproduction, 62(6), 1738-1744. doi:10.1095/biolreprod62.6.1738

Giritharan, G., Talbi, S., Donjacour, A., Di Sebastiano, F., Dobson, A. T., & Rinaudo, P. F. (2007). Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction, 134(1), 63-72. doi:10.1530/rep-06-0247

Van Landuyt, L., Van de Velde, H., De Vos, A., Haentjens, P., Blockeel, C., Tournaye, H., & Verheyen, G. (2013). Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos. Human Reproduction, 28(11), 2943-2949. doi:10.1093/humrep/det356

Salilew-Wondim, D., Saeed-Zidane, M., Hoelker, M., Gebremedhn, S., Poirier, M., Pandey, H. O., … Tesfaye, D. (2018). Genome-wide DNA methylation patterns of bovine blastocysts derived from in vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genomics, 19(1). doi:10.1186/s12864-018-4826-3

Heras, S., De Coninck, D. I. M., Van Poucke, M., Goossens, K., Bogado Pascottini, O., Van Nieuwerburgh, F., … Van Soom, A. (2016). Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genomics, 17(1). doi:10.1186/s12864-016-2393-z

Driver, A. M., Peñagaricano, F., Huang, W., Ahmad, K. R., Hackbart, K. S., Wiltbank, M. C., & Khatib, H. (2012). RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics, 13(1). doi:10.1186/1471-2164-13-118

Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., … Tesfaye, D. (2012). Molecular Mechanisms and Pathways Involved in Bovine Embryonic Genome Activation and Their Regulation by Alternative In Vivo and In Vitro Culture Conditions1. Biology of Reproduction, 87(4). doi:10.1095/biolreprod.112.099697

Miles, J. R., Blomberg, L. A., Krisher, R. L., Everts, R. E., Sonstegard, T. S., Van Tassell, C. P., & Zuelke, K. A. (2008). Comparative transcriptome analysis of in vivo- and in vitro-produced porcine blastocysts by small amplified RNA-Serial analysis of gene expression (SAR-SAGE). Molecular Reproduction and Development, 75(6), 976-988. doi:10.1002/mrd.20844

Bauer, B. K., Isom, S. C., Spate, L. D., Whitworth, K. M., Spollen, W. G., Blake, S. M., … Prather, R. S. (2010). Transcriptional Profiling by Deep Sequencing Identifies Differences in mRNA Transcript Abundance in In Vivo-Derived Versus In Vitro-Cultured Porcine Blastocyst Stage Embryos1. Biology of Reproduction, 83(5), 791-798. doi:10.1095/biolreprod.110.085936

Swain, J., Bormann, C., Clark, S., Walters, E., Wheeler, M., & Krisher, R. (2002). Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction, 253-260. doi:10.1530/rep.0.1230253

Lee, Y. S. L., Thouas, G. A., & Gardner, D. K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Human Reproduction, 30(3), 543-552. doi:10.1093/humrep/deu334

Krisher, R. L., Heuberger, A. L., Paczkowski, M., Stevens, J., Pospisil, C., Prather, R. S., … Schoolcraft, W. B. (2015). Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reproduction, Fertility and Development, 27(4), 602. doi:10.1071/rd14359

Perkel, K. J., & Madan, P. (2017). Spent culture medium analysis from individually cultured bovine embryos demonstrates metabolomic differences. Zygote, 25(6), 662-674. doi:10.1017/s0967199417000417

McKeegan, P. J., & Sturmey, R. G. (2012). The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development, 24(1), 59. doi:10.1071/rd11907

Sayre, B. L., & Lewis, G. S. (1993). Arachidonic acid metabolism during early development of ovine embryos: A possible relationship to shedding of the zona pellucida. Prostaglandins, 45(6), 557-569. doi:10.1016/0090-6980(93)90019-4

Feuer, S. K., Liu, X., Donjacour, A., Simbulan, R., Maltepe, E., & Rinaudo, P. (2017). Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction, 153(1), 107-122. doi:10.1530/rep-16-0473

Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465

Wang, L.-Y., Le, F., Wang, N., Li, L., Liu, X.-Z., Zheng, Y.-M., … Jin, F. (2013). Alteration of fatty acid metabolism in the liver, adipose tissue, and testis of male mice conceived through assisted reproductive technologies: fatty acid metabolism in ART mice. Lipids in Health and Disease, 12(1). doi:10.1186/1476-511x-12-5

Leese, H. J., Guerif, F., Allgar, V., Brison, D. R., Lundin, K., & Sturmey, R. G. (2016). Biological optimization, the Goldilocks principle, and how much islagomin the preimplantation embryo. Molecular Reproduction and Development, 83(9), 748-754. doi:10.1002/mrd.22684

Gándara, L., & Wappner, P. (2018). Metabo-Devo: A metabolic perspective of development. Mechanisms of Development, 154, 12-23. doi:10.1016/j.mod.2018.02.004

Viudes‐de‐Castro, M. P., Marco‐Jiménez, F., Más Pellicer, A., García‐Domínguez, X., Talaván, A. M., & Vicente, J. S. (2019). A single injection of corifollitropin alfa supplemented with human chorionic gonadotropin increases follicular recruitment and transferable embryos in the rabbit. Reproduction in Domestic Animals, 54(4), 696-701. doi:10.1111/rda.13411

Vicente, J. S., & García-Ximénez, F. (1994). Osmotic and cryoprotective effects of a mixture of DMSO and ethylene glycol on rabbit morulae. Theriogenology, 42(7), 1205-1215. doi:10.1016/0093-691x(94)90869-9

Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511

Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055

Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053

Diretto, G., Rubio-Moraga, A., Argandoña, J., Castillo, P., Gómez-Gómez, L., & Ahrazem, O. (2017). Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules, 22(8), 1359. doi:10.3390/molecules22081359

Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007

Di Meo, F., Aversano, R., Diretto, G., Demurtas, O. C., Villano, C., Cozzolino, S., … Crispi, S. (2019). Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. Journal of Functional Foods, 61, 103515. doi:10.1016/j.jff.2019.103515

Fiore, A., Dall’Osto, L., Cazzaniga, S., Diretto, G., Giuliano, G., & Bassi, R. (2012). A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biology, 12(1). doi:10.1186/1471-2229-12-50

Rambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619

Sulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., & Giuliano, G. (2017). Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLOS ONE, 12(9), e0184143. doi:10.1371/journal.pone.0184143

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x

Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem