- -

New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy

Show simple item record

Files in this item

dc.contributor.author Hernández Teruel, Adrián es_ES
dc.contributor.author Gonzalez-Alvarez, Isabel es_ES
dc.contributor.author Bermejo, Marival es_ES
dc.contributor.author Merino Sanjuán, Virginia es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Gonzalez-Alvarez, Marta es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2021-07-17T03:34:52Z
dc.date.available 2021-07-17T03:34:52Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169426
dc.description.abstract [EN] Colonic Drug Delivery Systems (CDDS) are especially advantageous for local treatment of inflammatory bowel diseases (IBD). Site-targeted drug release allows to obtain a high drug concentration in injured tissues and less systemic adverse effects, as consequence of less/null drug absorption in small intestine. This review focused on the reported contributions in the last four years to improve the effectiveness of treatments of inflammatory bowel diseases. The work concludes that there has been an increase in the development of CDDS in which pH, specific enzymes, reactive oxygen species (ROS), or a combination of all of these triggers the release. These delivery systems demonstrated a therapeutic improvement with fewer adverse effects. Future perspectives to the treatment of this disease include the elucidation of molecular basis of IBD diseases in order to design more specific treatments, and the performance of more in vivo assays to validate the specificity and stability of the obtained systems. es_ES
dc.description.sponsorship The authors want to thank the Spanish Government (project RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (project PROMETEO/2018/024) for support. This work was also supported by the project "MODELOS IN VITRO DE EVALUACION BIOFARMACEUTICA" SAF2016-78756(AEI/FEDER, EU) funded by Agencia Estatal Investigacion and European Union, through FEDER (Fondo Europeo de Desarrollo Regional). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Intestinal permeability es_ES
dc.subject Colon es_ES
dc.subject Drug delivery es_ES
dc.subject Inflammatory bowel diseases es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms21186502 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2016-78756-P/ES/MODELOS IN VITRO DE EVALUACION BIOFARMACEUTICA: BARRERAS BIOLOGICAS Y DISOLUCION BIOPREDICTIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Hernández Teruel, A.; Gonzalez-Alvarez, I.; Bermejo, M.; Merino Sanjuán, V.; Marcos Martínez, MD.; Sancenón Galarza, F.; Gonzalez-Alvarez, M.... (2020). New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. International Journal of Molecular Sciences. 21(18):1-30. https://doi.org/10.3390/ijms21186502 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms21186502 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.relation.pasarela S\434158 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Lautenschläger, C., Schmidt, C., Fischer, D., & Stallmach, A. (2014). Drug delivery strategies in the therapy of inflammatory bowel disease. Advanced Drug Delivery Reviews, 71, 58-76. doi:10.1016/j.addr.2013.10.001 es_ES
dc.description.references Nakai, D., Miyake, M., & Hashimoto, A. (2020). Comparison of the Intestinal Drug Permeation and Accumulation Between Normal Human Intestinal Tissues and Human Intestinal Tissues With Ulcerative Colitis. Journal of Pharmaceutical Sciences, 109(4), 1623-1626. doi:10.1016/j.xphs.2019.12.015 es_ES
dc.description.references Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Inflammatory Bowel Disease. Annual Review of Immunology, 28(1), 573-621. doi:10.1146/annurev-immunol-030409-101225 es_ES
dc.description.references Xu, X.-M., & Zhang, H.-J. (2016). miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World Journal of Gastroenterology, 22(7), 2206-2218. doi:10.3748/wjg.v22.i7.2206 es_ES
dc.description.references Kim, D. H., & Cheon, J. H. (2017). Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Network, 17(1), 25. doi:10.4110/in.2017.17.1.25 es_ES
dc.description.references Inflammatory Bowel Disease | British Society for Immunology https://www.immunology.org/es/public-information/bitesized-immunology/immune-dysfunction/enfermedad-inflamatoria-intestinal es_ES
dc.description.references Jay, M., Beihn, R. M., Digenis, G. A., Deland, F. H., Caldwell, L., & Mlodozeniec, A. R. (1985). Disposition of radiolabelled suppositories in humans. Journal of Pharmacy and Pharmacology, 37(4), 266-268. doi:10.1111/j.2042-7158.1985.tb05058.x es_ES
dc.description.references Newton, A. M. J., & Lakshmanan, P. (2014). Effect of HPMC - E15 LV premium Polymer on Release Profile and Compression Characteristics of Chitosan/ Pectin Colon Targeted Mesalamine Matrix Tablets and in vitro Study on Effect of pH Impact on the Drug Release Profile. Recent Patents on Drug Delivery & Formulation, 8(1), 46-62. doi:10.2174/1872211308666140225143926 es_ES
dc.description.references DeFilippis, E. M., Longman, R., Harbus, M., Dannenberg, K., & Scherl, E. J. (2016). Crohn’s Disease: Evolution, Epigenetics, and the Emerging Role of Microbiome-Targeted Therapies. Current Gastroenterology Reports, 18(3). doi:10.1007/s11894-016-0487-z es_ES
dc.description.references Neurath, M. F., & Travis, S. P. L. (2012). Mucosal healing in inflammatory bowel diseases: a systematic review. Gut, 61(11), 1619-1635. doi:10.1136/gutjnl-2012-302830 es_ES
dc.description.references Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117-1132. doi:10.1016/j.nano.2015.02.018 es_ES
dc.description.references Hu, Z., Mawatari, S., Shibata, N., Takada, K., Yoshikawa, H., Arakawa, A., & Yosida, Y. (2000). Pharmaceutical Research, 17(2), 160-167. doi:10.1023/a:1007561129221 es_ES
dc.description.references Rana, S. V., Sharma, S., Malik, A., Kaur, J., Prasad, K. K., Sinha, S. K., & Singh, K. (2013). Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 58(9), 2594-2598. doi:10.1007/s10620-013-2694-x es_ES
dc.description.references Philip, A., & Philip, B. (2010). Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches. Oman Medical Journal, 25(2), 70-78. doi:10.5001/omj.2010.24 es_ES
dc.description.references Rao, K. A. (2004). Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. British Journal of Sports Medicine, 38(4), 482-487. doi:10.1136/bjsm.2003.006825 es_ES
dc.description.references Podolsky, D. K. (2002). Inflammatory Bowel Disease. New England Journal of Medicine, 347(6), 417-429. doi:10.1056/nejmra020831 es_ES
dc.description.references Hebden, Blackshaw, Perkins, Wilson, & Spiller. (2000). Limited exposure of the healthy distal colon to orally-dosed formulation is further exaggerated in active left-sided ulcerative colitis. Alimentary Pharmacology & Therapeutics, 14(2), 155-161. doi:10.1046/j.1365-2036.2000.00697.x es_ES
dc.description.references Fallingborg, J., Christensen, L. A., Jacobsen, B. A., & Rasmussen, S. N. (1993). Very low intraluminal colonic pH in patients with active ulcerative colitis. Digestive Diseases and Sciences, 38(11), 1989-1993. doi:10.1007/bf01297074 es_ES
dc.description.references Bratten, J., & Jones, M. P. (2006). New Directions in the Assessment of Gastric Function: Clinical Applications of Physiologic Measurements. Digestive Diseases, 24(3-4), 252-259. doi:10.1159/000092878 es_ES
dc.description.references NUGENT, S. G. (2001). Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut, 48(4), 571-577. doi:10.1136/gut.48.4.571 es_ES
dc.description.references Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028 es_ES
dc.description.references Sinha, V. R., & Kumria, R. (2001). Pharmaceutical Research, 18(5), 557-564. doi:10.1023/a:1011033121528 es_ES
dc.description.references Gorbach, S. L. (1971). Intestinal Microflora. Gastroenterology, 60(6), 1110-1129. doi:10.1016/s0016-5085(71)80039-2 es_ES
dc.description.references Simon, G. L., & Gorbach, S. L. (1986). The human intestinal microflora. Digestive Diseases and Sciences, 31(S9), 147-162. doi:10.1007/bf01295996 es_ES
dc.description.references Rubinstein, A. (1990). Microbially controlled drug delivery to the colon. Biopharmaceutics & Drug Disposition, 11(6), 465-475. doi:10.1002/bdd.2510110602 es_ES
dc.description.references Sartor, R. B. (2008). Therapeutic correction of bacterial dysbiosis discovered by molecular techniques. Proceedings of the National Academy of Sciences, 105(43), 16413-16414. doi:10.1073/pnas.0809363105 es_ES
dc.description.references Liu, T.-C., & Stappenbeck, T. S. (2016). Genetics and Pathogenesis of Inflammatory Bowel Disease. Annual Review of Pathology: Mechanisms of Disease, 11(1), 127-148. doi:10.1146/annurev-pathol-012615-044152 es_ES
dc.description.references Xiao, B., & Merlin, D. (2012). Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opinion on Drug Delivery, 9(11), 1393-1407. doi:10.1517/17425247.2012.730517 es_ES
dc.description.references Lamprecht, A., Yamamoto, H., Takeuchi, H., & Kawashima, Y. (2005). Nanoparticles Enhance Therapeutic Efficiency by Selectively Increased Local Drug Dose in Experimental Colitis in Rats. Journal of Pharmacology and Experimental Therapeutics, 315(1), 196-202. doi:10.1124/jpet.105.088146 es_ES
dc.description.references Beloqui, A., Coco, R., Alhouayek, M., Solinís, M. Á., Rodríguez-Gascón, A., Muccioli, G. G., & Préat, V. (2013). Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. International Journal of Pharmaceutics, 454(2), 775-783. doi:10.1016/j.ijpharm.2013.05.017 es_ES
dc.description.references Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Pharmaceutical Research, 13(12), 1838-1845. doi:10.1023/a:1016085108889 es_ES
dc.description.references Naeem, M., Bae, J., A. Oshi, M., Kim, M.-S., Moon, H. R., Lee, B. L., … Yoo, J.-W. (2018). Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. International Journal of Nanomedicine, Volume 13, 1225-1240. doi:10.2147/ijn.s157566 es_ES
dc.description.references Oshi, M. A., Naeem, M., Bae, J., Kim, J., Lee, J., Hasan, N., … Yoo, J.-W. (2018). Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydrate Polymers, 198, 434-442. doi:10.1016/j.carbpol.2018.06.107 es_ES
dc.description.references Date, A. A., Hanes, J., & Ensign, L. M. (2016). Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 240, 504-526. doi:10.1016/j.jconrel.2016.06.016 es_ES
dc.description.references Vass, P., Démuth, B., Hirsch, E., Nagy, B., Andersen, S. K., Vigh, T., … Marosi, G. (2019). Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 296, 162-178. doi:10.1016/j.jconrel.2019.01.023 es_ES
dc.description.references Taghipour, Y. D., Bahramsoltani, R., Marques, A. M., Naseri, R., Rahimi, R., Haratipour, P., … Abdollahi, M. (2018). A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. DARU Journal of Pharmaceutical Sciences, 26(2), 229-239. doi:10.1007/s40199-018-0222-4 es_ES
dc.description.references Zhang, M., & Merlin, D. (2018). Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflammatory Bowel Diseases, 24(7), 1401-1415. doi:10.1093/ibd/izy123 es_ES
dc.description.references Varum, F., Freire, A. C., Bravo, R., & Basit, A. W. (2020). OPTICORE™, an innovative and accurate colonic targeting technology. International Journal of Pharmaceutics, 583, 119372. doi:10.1016/j.ijpharm.2020.119372 es_ES
dc.description.references Lee, S. H., Bajracharya, R., Min, J. Y., Han, J.-W., Park, B. J., & Han, H.-K. (2020). Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics, 12(1), 68. doi:10.3390/pharmaceutics12010068 es_ES
dc.description.references Nidhi, Rashid, M., Kaur, V., Hallan, S. S., Sharma, S., & Mishra, N. (2016). Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharmaceutical Journal, 24(4), 458-472. doi:10.1016/j.jsps.2014.10.001 es_ES
dc.description.references Yoon, S.-W., Shin, D. H., & Kim, J.-S. (2019). Liposomal itraconazole formulation for the treatment of glioblastoma using inclusion complex with HP-β-CD. Journal of Pharmaceutical Investigation, 49(4), 477-483. doi:10.1007/s40005-019-00432-4 es_ES
dc.description.references Bazan, L., Bendas, E. R., El Gazayerly, O. N., & Badawy, S. S. (2016). Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro–in-vivo evaluation. Drug Delivery, 23(9), 3339-3349. doi:10.1080/10717544.2016.1178824 es_ES
dc.description.references Goyanes, A., Hatton, G. B., Merchant, H. A., & Basit, A. W. (2015). Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations. International Journal of Pharmaceutics, 484(1-2), 103-108. doi:10.1016/j.ijpharm.2015.02.051 es_ES
dc.description.references Ma, C., Battat, R., Dulai, P. S., Parker, C. E., Sandborn, W. J., Feagan, B. G., & Jairath, V. (2019). Innovations in Oral Therapies for Inflammatory Bowel Disease. Drugs, 79(12), 1321-1335. doi:10.1007/s40265-019-01169-y es_ES
dc.description.references Bak, A., Ashford, M., & Brayden, D. J. (2018). Local delivery of macromolecules to treat diseases associated with the colon. Advanced Drug Delivery Reviews, 136-137, 2-27. doi:10.1016/j.addr.2018.10.009 es_ES
dc.description.references Yu, A., Baker, J. R., Fioritto, A. F., Wang, Y., Luo, R., Li, S., … Sun, D. (2016). Measurement of in vivo Gastrointestinal Release and Dissolution of Three Locally Acting Mesalamine Formulations in Regions of the Human Gastrointestinal Tract. Molecular Pharmaceutics, 14(2), 345-358. doi:10.1021/acs.molpharmaceut.6b00641 es_ES
dc.description.references Ibekwe, V. C., Fadda, H. M., McConnell, E. L., Khela, M. K., Evans, D. F., & Basit, A. W. (2008). Interplay Between Intestinal pH, Transit Time and Feed Status on the In Vivo Performance of pH Responsive Ileo-Colonic Release Systems. Pharmaceutical Research, 25(8), 1828-1835. doi:10.1007/s11095-008-9580-9 es_ES
dc.description.references Mansuri, S., Kesharwani, P., Jain, K., Tekade, R. K., & Jain, N. K. (2016). Mucoadhesion: A promising approach in drug delivery system. Reactive and Functional Polymers, 100, 151-172. doi:10.1016/j.reactfunctpolym.2016.01.011 es_ES
dc.description.references Agüero, L., Zaldivar-Silva, D., Peña, L., & Dias, M. L. (2017). Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers, 168, 32-43. doi:10.1016/j.carbpol.2017.03.033 es_ES
dc.description.references Duan, H., Lü, S., Gao, C., Bai, X., Qin, H., Wei, Y., … Liu, M. (2016). Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids and Surfaces B: Biointerfaces, 145, 510-519. doi:10.1016/j.colsurfb.2016.05.038 es_ES
dc.description.references Cong, Z., Shi, Y., Wang, Y., Wang, Y., Niu, J., Chen, N., & Xue, H. (2018). A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. International Journal of Biological Macromolecules, 107, 855-864. doi:10.1016/j.ijbiomac.2017.09.065 es_ES
dc.description.references Gareb, B., Dijkstra, G., Kosterink, J. G. W., & Frijlink, H. W. (2019). Development of novel zero-order release budesonide tablets for the treatment of ileo-colonic inflammatory bowel disease and comparison with formulations currently used in clinical practice. International Journal of Pharmaceutics, 554, 366-375. doi:10.1016/j.ijpharm.2018.11.019 es_ES
dc.description.references Gareb, B., Posthumus, S., Beugeling, M., Koopmans, P., Touw, D. J., Dijkstra, G., … Frijlink, H. W. (2019). Towards the Oral Treatment of Ileo-Colonic Inflammatory Bowel Disease with Infliximab Tablets: Development and Validation of the Production Process. Pharmaceutics, 11(9), 428. doi:10.3390/pharmaceutics11090428 es_ES
dc.description.references González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., … Sancenón, F. (2017). Gated Mesoporous Silica Nanocarriers for a «Two-Step» Targeted System to Colonic Tissue. Molecular Pharmaceutics, 14(12), 4442-4453. doi:10.1021/acs.molpharmaceut.7b00565 es_ES
dc.description.references Deng, X.-Q., Zhang, H.-B., Wang, G.-F., Xu, D., Zhang, W.-Y., Wang, Q.-S., & Cui, Y.-L. (2019). Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. International Journal of Pharmaceutics, 570, 118644. doi:10.1016/j.ijpharm.2019.118644 es_ES
dc.description.references Shi, X., Yan, Y., Wang, P., Sun, Y., Zhang, D., Zou, Y., … Dong, Y. (2018). In vitro and in vivo study of pH-sensitive and colon-targeting P(LE-IA-MEG) hydrogel microspheres used for ulcerative colitis therapy. European Journal of Pharmaceutics and Biopharmaceutics, 122, 70-77. doi:10.1016/j.ejpb.2017.10.003 es_ES
dc.description.references Malviya, T., Joshi, S., Dwivedi, L. M., Baranwal, K., Shehala, Pandey, A. K., & Singh, V. (2018). Synthesis of Aloevera/Acrylonitrile based Nanoparticles for targeted drug delivery of 5-Aminosalicylic acid. International Journal of Biological Macromolecules, 106, 930-939. doi:10.1016/j.ijbiomac.2017.08.085 es_ES
dc.description.references Chen, J., Li, X., Chen, L., & Xie, F. (2018). Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydrate Polymers, 191, 242-254. doi:10.1016/j.carbpol.2018.03.025 es_ES
dc.description.references Günter, E. A., & Popeyko, O. V. (2016). Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydrate Polymers, 147, 490-499. doi:10.1016/j.carbpol.2016.04.026 es_ES
dc.description.references Qiao, H., Fang, D., Chen, J., Sun, Y., Kang, C., Di, L., … Gao, Y. (2017). Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Delivery, 24(1), 233-242. doi:10.1080/10717544.2016.1245367 es_ES
dc.description.references Morales‐Burgos, A. M., Carvajal‐Millan, E., Rascón‐Chu, A., Martínez‐López, A. L., Lizardi‐Mendoza, J., López‐Franco, Y. L., & Brown‐Bojorquez, F. (2019). Tailoring reversible insulin aggregates loaded in electrosprayed arabinoxylan microspheres intended for colon‐targeted delivery. Journal of Applied Polymer Science, 136(38), 47960. doi:10.1002/app.47960 es_ES
dc.description.references Miramontes-Corona, C., Escalante, A., Delgado, E., Corona-González, R. I., Vázquez-Torres, H., & Toriz, G. (2020). Hydrophobic agave fructans for sustained drug delivery to the human colon. Reactive and Functional Polymers, 146, 104396. doi:10.1016/j.reactfunctpolym.2019.104396 es_ES
dc.description.references Zhu, A. Z. X., Ho, M.-C. D., Gemski, C. K., Chuang, B.-C., Liao, M., & Xia, C. Q. (2016). Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: a Comparison with Physiologically Based Pharmacokinetic Modeling. The AAPS Journal, 18(6), 1512-1523. doi:10.1208/s12248-016-9972-4 es_ES
dc.description.references Barclay, T. G., Day, C. M., Petrovsky, N., & Garg, S. (2019). Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers, 221, 94-112. doi:10.1016/j.carbpol.2019.05.067 es_ES
dc.description.references Naeem, M., Kim, W., Cao, J., Jung, Y., & Yoo, J.-W. (2014). Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids and Surfaces B: Biointerfaces, 123, 271-278. doi:10.1016/j.colsurfb.2014.09.026 es_ES
dc.description.references Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375 es_ES
dc.description.references Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 16(6), 2418-2429. doi:10.1021/acs.molpharmaceut.9b00041 es_ES
dc.description.references Rafii, F., Franklin, W., & Cerniglia, C. E. (1990). Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Applied and Environmental Microbiology, 56(7), 2146-2151. doi:10.1128/aem.56.7.2146-2151.1990 es_ES
dc.description.references Kaur, R., Gulati, M., & Singh, S. K. (2017). Role of synbiotics in polysaccharide assisted colon targeted microspheres of mesalamine for the treatment of ulcerative colitis. International Journal of Biological Macromolecules, 95, 438-450. doi:10.1016/j.ijbiomac.2016.11.066 es_ES
dc.description.references Ferri, D., Gaviña, P., Parra, M., Costero, A. M., El Haskouri, J., Amorós, P., … Martínez-Máñez, R. (2018). Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 5(8), 180873. doi:10.1098/rsos.180873 es_ES
dc.description.references Ma, Z.-G., Ma, R., Xiao, X.-L., Zhang, Y.-H., Zhang, X.-Z., Hu, N., … Sun, Z.-J. (2016). Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomaterialia, 44, 323-331. doi:10.1016/j.actbio.2016.08.021 es_ES
dc.description.references Karrout, Y., Dubuquoy, L., Piveteau, C., Siepmann, F., Moussa, E., Wils, D., … Siepmann, J. (2015). In vivo efficacy of microbiota-sensitive coatings for colon targeting: A promising tool for IBD therapy. Journal of Controlled Release, 197, 121-130. doi:10.1016/j.jconrel.2014.11.006 es_ES
dc.description.references Kumar, B., Kulanthaivel, S., Mondal, A., Mishra, S., Banerjee, B., Bhaumik, A., … Giri, S. (2017). Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids and Surfaces B: Biointerfaces, 150, 352-361. doi:10.1016/j.colsurfb.2016.10.049 es_ES
dc.description.references Yamada, K., Iwao, Y., Bani-Jaber, A., Noguchi, S., & Itai, S. (2015). Preparation and Evaluation of Newly Developed Chitosan Salt Coating Dispersions for Colon Delivery without Requiring Overcoating. CHEMICAL & PHARMACEUTICAL BULLETIN, 63(10), 799-806. doi:10.1248/cpb.c15-00308 es_ES
dc.description.references Amidon, S., Brown, J. E., & Dave, V. S. (2015). Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech, 16(4), 731-741. doi:10.1208/s12249-015-0350-9 es_ES
dc.description.references Dagli, Ü., Balk, M., Yücel, D., Ülker, A., Över, H., Saydam, G., & Şahin, B. (1997). The Role of Reactive Oxygen Metabolites in Ulcerative Colitis. Inflammatory Bowel Diseases, 3(4), 260-264. doi:10.1097/00054725-199712000-00003 es_ES
dc.description.references Simmonds, N. J., & Rampton, D. S. (1993). Inflammatory bowel disease--a radical view. Gut, 34(7), 865-868. doi:10.1136/gut.34.7.865 es_ES
dc.description.references GRISHAM, M. (1994). Oxidants and free radicals in inflammatory bowel disease. The Lancet, 344(8926), 859-861. doi:10.1016/s0140-6736(94)92831-2 es_ES
dc.description.references Zhang, Q., Tao, H., Lin, Y., Hu, Y., An, H., Zhang, D., … Zhang, J. (2016). A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 105, 206-221. doi:10.1016/j.biomaterials.2016.08.010 es_ES
dc.description.references Sedghi, S., Fields, J. Z., Klamut, M., Urban, G., Durkin, M., Winship, D., … Keshavarzian, A. (1993). Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut, 34(9), 1191-1197. doi:10.1136/gut.34.9.1191 es_ES
dc.description.references Simmonds, N. J., Allen, R. E., Stevens, T. R. J., Niall, R., Van Someren, M., Blake, D. R., & Rampton, D. S. (1992). Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology, 103(1), 186-196. doi:10.1016/0016-5085(92)91112-h es_ES
dc.description.references Vong, L. B., Mo, J., Abrahamsson, B., & Nagasaki, Y. (2015). Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. Journal of Controlled Release, 210, 19-25. doi:10.1016/j.jconrel.2015.05.275 es_ES
dc.description.references Vong, L. B., & Nagasaki, Y. (2016). Combination Treatment of Murine Colon Cancer with Doxorubicin and Redox Nanoparticles. Molecular Pharmaceutics, 13(2), 449-455. doi:10.1021/acs.molpharmaceut.5b00676 es_ES
dc.description.references Babbs, C. F. (1992). Oxygen radicals in ulcerative colitis. Free Radical Biology and Medicine, 13(2), 169-181. doi:10.1016/0891-5849(92)90079-v es_ES
dc.description.references Jin, Y., Kotakadi, V. S., Ying, L., Hofseth, A. B., Cui, X., Wood, P. A., … Hofseth, L. J. (2008). American ginseng suppresses inflammation and DNA damage associated with mouse colitis. Carcinogenesis, 29(12), 2351-2359. doi:10.1093/carcin/bgn211 es_ES
dc.description.references Seguí, J., Gironella, M., Sans, M., Granell, S., Gil, F., Gimeno, M., … Panés, J. (2004). Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. Journal of Leukocyte Biology, 76(3), 537-544. doi:10.1189/jlb.0304196 es_ES
dc.description.references Wilcox, C. S. (2010). Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacology & Therapeutics, 126(2), 119-145. doi:10.1016/j.pharmthera.2010.01.003 es_ES
dc.description.references Xiao, B., Laroui, H., Viennois, E., Ayyadurai, S., Charania, M. A., Zhang, Y., … Merlin, D. (2014). Nanoparticles With Surface Antibody Against CD98 and Carrying CD98 Small Interfering RNA Reduce Colitis in Mice. Gastroenterology, 146(5), 1289-1300.e19. doi:10.1053/j.gastro.2014.01.056 es_ES
dc.description.references Fromont Hankard, Cezard, Aigrain, Navarro, & Peuchmaur. (1998). CD44 variant expression in inflammatory colonic mucosa is not disease specific but associated with increased crypt cell proliferation. Histopathology, 32(4), 317-321. doi:10.1046/j.1365-2559.1998.00404.x es_ES
dc.description.references Farkas, S., Hornung, M., Sattler, C., Anthuber, M., Gunthert, U., Herfarth, H., … Wittig, B. M. (2005). Short-term treatment with anti-CD44v7 antibody, but not CD44v4, restores the gut mucosa in established chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clinical and Experimental Immunology, 142(2), 260-267. doi:10.1111/j.1365-2249.2005.02911.x es_ES
dc.description.references Xiao, B., Zhang, Z., Viennois, E., Kang, Y., Zhang, M., Han, M. K., … Merlin, D. (2016). Combination Therapy for Ulcerative Colitis: Orally Targeted Nanoparticles Prevent Mucosal Damage and Relieve Inflammation. Theranostics, 6(12), 2250-2266. doi:10.7150/thno.15710 es_ES
dc.description.references Zhang, M., Xu, C., Liu, D., Han, M. K., Wang, L., & Merlin, D. (2017). Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. Journal of Crohn’s and Colitis, 12(2), 217-229. doi:10.1093/ecco-jcc/jjx115 es_ES
dc.description.references Dou, Y.-X., Zhou, J.-T., Wang, T.-T., Huang, Y.-F., Chen, P., Xie, Y.-L., … Zeng, H.-F. (2018). Self-nanoemulsfiying drug delivery system of bruceine D: a new approach for anti-ulcerative colitis. International Journal of Nanomedicine, Volume 13, 5887-5907. doi:10.2147/ijn.s174146 es_ES
dc.description.references Higa, L. H., Jerez, H. E., de Farias, M. A., Portugal, R. V., Romero, E. L., & Morilla, M. J. (2017). Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine, 12(10), 1165-1175. doi:10.2217/nnm-2016-0437 es_ES
dc.description.references Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., … Merlin, D. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. doi:10.1016/j.biomaterials.2016.06.018 es_ES
dc.description.references Melero, A., Draheim, C., Hansen, S., Giner, E., Carreras, J. J., Talens-Visconti, R., … Lehr, C.-M. (2017). Targeted delivery of Cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 119, 361-371. doi:10.1016/j.ejpb.2017.07.004 es_ES
dc.description.references Wang, J.-L., Gan, Y.-J., Iqbal, S., Jiang, W., Yuan, Y.-Y., & Wang, J. (2018). Delivery of tacrolimus with cationic lipid-assisted nanoparticles for ulcerative colitis therapy. Biomaterials Science, 6(7), 1916-1922. doi:10.1039/c8bm00463c es_ES
dc.description.references Sun, Q., Luan, L., Arif, M., Li, J., Dong, Q.-J., Gao, Y., … Liu, C.-G. (2018). Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydrate Polymers, 189, 352-359. doi:10.1016/j.carbpol.2017.12.021 es_ES
dc.description.references Deng, Z., Rong, Y., Teng, Y., Mu, J., Zhuang, X., Tseng, M., … Zhang, H.-G. (2017). Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Molecular Therapy, 25(7), 1641-1654. doi:10.1016/j.ymthe.2017.01.025 es_ES
dc.description.references Hatton, G. B., Yadav, V., Basit, A. W., & Merchant, H. A. (2015). Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. Journal of Pharmaceutical Sciences, 104(9), 2747-2776. doi:10.1002/jps.24365 es_ES
dc.description.references Hatton, G. B., Madla, C. M., Rabbie, S. C., & Basit, A. W. (2018). All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. International Journal of Pharmaceutics, 548(1), 408-422. doi:10.1016/j.ijpharm.2018.06.054 es_ES
dc.description.references Kim, M. S., Yeom, D. W., Kim, S. R., Yoon, H. Y., Kim, C. H., Son, H. Y., … Choi, Y. W. (2016). Development of a chitosan based double layer-coated tablet as a platform for colon-specific drug delivery. Drug Design, Development and Therapy, Volume11, 45-57. doi:10.2147/dddt.s123412 es_ES
dc.description.references IBEKWE, V. C., KHELA, M. K., EVANS, D. F., & BASIT, A. W. (2008). A new concept in colonic drug targeting: a combined pH-responsive and bacterially-triggered drug delivery technology. Alimentary Pharmacology & Therapeutics, 28(7), 911-916. doi:10.1111/j.1365-2036.2008.03810.x es_ES
dc.description.references Allegretti, J. R., Fischer, M., Sagi, S. V., Bohm, M. E., Fadda, H. M., Ranmal, S. R., … Kassam, Z. (2018). Fecal Microbiota Transplantation Capsules with Targeted Colonic Versus Gastric Delivery in Recurrent Clostridium difficile Infection: A Comparative Cohort Analysis of High and Lose Dose. Digestive Diseases and Sciences, 64(6), 1672-1678. doi:10.1007/s10620-018-5396-6 es_ES
dc.description.references Varum, F., Freire, A. C., Fadda, H. M., Bravo, R., & Basit, A. W. (2020). A dual pH and microbiota-triggered coating (Phloral™) for fail-safe colonic drug release. International Journal of Pharmaceutics, 583, 119379. doi:10.1016/j.ijpharm.2020.119379 es_ES
dc.description.references Nguyen, M. N. U., Tran, P. H. L., & Tran, T. T. D. (2019). A single-layer film coating for colon-targeted oral delivery. International Journal of Pharmaceutics, 559, 402-409. doi:10.1016/j.ijpharm.2019.01.066 es_ES
dc.description.references Huang, Z., Gan, J., Jia, L., Guo, G., Wang, C., Zang, Y., … Dong, L. (2015). An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials, 48, 26-36. doi:10.1016/j.biomaterials.2015.01.013 es_ES
dc.description.references Hou, L., Shi, Y., Jiang, G., Liu, W., Han, H., Feng, Q., … Zhang, Z. (2016). Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology, 27(31), 315105. doi:10.1088/0957-4484/27/31/315105 es_ES
dc.description.references Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007 es_ES
dc.description.references Maurer, J. M., Hofman, S., Schellekens, R. C. A., Tonnis, W. F., Dubois, A. O. T., Woerdenbag, H. J., … Frijlink, H. W. (2016). Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: A feasibility study. International Journal of Pharmaceutics, 505(1-2), 175-186. doi:10.1016/j.ijpharm.2016.03.027 es_ES
dc.description.references Alange, V. V., Birajdar, R. P., & Kulkarni, R. V. (2017). Functionally modified polyacrylamide- graft -gum karaya pH-sensitive spray dried microspheres for colon targeting of an anti-cancer drug. International Journal of Biological Macromolecules, 102, 829-839. doi:10.1016/j.ijbiomac.2017.04.023 es_ES
dc.description.references Xiao, B., Xu, Z., Viennois, E., Zhang, Y., Zhang, Z., Zhang, M., … Merlin, D. (2017). Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Molecular Therapy, 25(7), 1628-1640. doi:10.1016/j.ymthe.2016.11.020 es_ES


This item appears in the following Collection(s)

Show simple item record