- -

New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy

Mostrar el registro completo del ítem

Hernández Teruel, A.; Gonzalez-Alvarez, I.; Bermejo, M.; Merino Sanjuán, V.; Marcos Martínez, MD.; Sancenón Galarza, F.; Gonzalez-Alvarez, M.... (2020). New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. International Journal of Molecular Sciences. 21(18):1-30. https://doi.org/10.3390/ijms21186502

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169426

Ficheros en el ítem

Metadatos del ítem

Título: New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy
Autor: Hernández Teruel, Adrián Gonzalez-Alvarez, Isabel Bermejo, Marival Merino Sanjuán, Virginia Marcos Martínez, María Dolores Sancenón Galarza, Félix Gonzalez-Alvarez, Marta Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Colonic Drug Delivery Systems (CDDS) are especially advantageous for local treatment of inflammatory bowel diseases (IBD). Site-targeted drug release allows to obtain a high drug concentration in injured tissues and ...[+]
Palabras clave: Intestinal permeability , Colon , Drug delivery , Inflammatory bowel diseases
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms21186502
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijms21186502
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2016-78756-P/ES/MODELOS IN VITRO DE EVALUACION BIOFARMACEUTICA: BARRERAS BIOLOGICAS Y DISOLUCION BIOPREDICTIVA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Agradecimientos:
The authors want to thank the Spanish Government (project RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (project PROMETEO/2018/024) for support. This work was also supported by the project ...[+]
Tipo: Artículo

References

Lautenschläger, C., Schmidt, C., Fischer, D., & Stallmach, A. (2014). Drug delivery strategies in the therapy of inflammatory bowel disease. Advanced Drug Delivery Reviews, 71, 58-76. doi:10.1016/j.addr.2013.10.001

Nakai, D., Miyake, M., & Hashimoto, A. (2020). Comparison of the Intestinal Drug Permeation and Accumulation Between Normal Human Intestinal Tissues and Human Intestinal Tissues With Ulcerative Colitis. Journal of Pharmaceutical Sciences, 109(4), 1623-1626. doi:10.1016/j.xphs.2019.12.015

Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Inflammatory Bowel Disease. Annual Review of Immunology, 28(1), 573-621. doi:10.1146/annurev-immunol-030409-101225 [+]
Lautenschläger, C., Schmidt, C., Fischer, D., & Stallmach, A. (2014). Drug delivery strategies in the therapy of inflammatory bowel disease. Advanced Drug Delivery Reviews, 71, 58-76. doi:10.1016/j.addr.2013.10.001

Nakai, D., Miyake, M., & Hashimoto, A. (2020). Comparison of the Intestinal Drug Permeation and Accumulation Between Normal Human Intestinal Tissues and Human Intestinal Tissues With Ulcerative Colitis. Journal of Pharmaceutical Sciences, 109(4), 1623-1626. doi:10.1016/j.xphs.2019.12.015

Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Inflammatory Bowel Disease. Annual Review of Immunology, 28(1), 573-621. doi:10.1146/annurev-immunol-030409-101225

Xu, X.-M., & Zhang, H.-J. (2016). miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World Journal of Gastroenterology, 22(7), 2206-2218. doi:10.3748/wjg.v22.i7.2206

Kim, D. H., & Cheon, J. H. (2017). Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Network, 17(1), 25. doi:10.4110/in.2017.17.1.25

Inflammatory Bowel Disease | British Society for Immunology https://www.immunology.org/es/public-information/bitesized-immunology/immune-dysfunction/enfermedad-inflamatoria-intestinal

Jay, M., Beihn, R. M., Digenis, G. A., Deland, F. H., Caldwell, L., & Mlodozeniec, A. R. (1985). Disposition of radiolabelled suppositories in humans. Journal of Pharmacy and Pharmacology, 37(4), 266-268. doi:10.1111/j.2042-7158.1985.tb05058.x

Newton, A. M. J., & Lakshmanan, P. (2014). Effect of HPMC - E15 LV premium Polymer on Release Profile and Compression Characteristics of Chitosan/ Pectin Colon Targeted Mesalamine Matrix Tablets and in vitro Study on Effect of pH Impact on the Drug Release Profile. Recent Patents on Drug Delivery & Formulation, 8(1), 46-62. doi:10.2174/1872211308666140225143926

DeFilippis, E. M., Longman, R., Harbus, M., Dannenberg, K., & Scherl, E. J. (2016). Crohn’s Disease: Evolution, Epigenetics, and the Emerging Role of Microbiome-Targeted Therapies. Current Gastroenterology Reports, 18(3). doi:10.1007/s11894-016-0487-z

Neurath, M. F., & Travis, S. P. L. (2012). Mucosal healing in inflammatory bowel diseases: a systematic review. Gut, 61(11), 1619-1635. doi:10.1136/gutjnl-2012-302830

Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117-1132. doi:10.1016/j.nano.2015.02.018

Hu, Z., Mawatari, S., Shibata, N., Takada, K., Yoshikawa, H., Arakawa, A., & Yosida, Y. (2000). Pharmaceutical Research, 17(2), 160-167. doi:10.1023/a:1007561129221

Rana, S. V., Sharma, S., Malik, A., Kaur, J., Prasad, K. K., Sinha, S. K., & Singh, K. (2013). Small Intestinal Bacterial Overgrowth and Orocecal Transit Time in Patients of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 58(9), 2594-2598. doi:10.1007/s10620-013-2694-x

Philip, A., & Philip, B. (2010). Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches. Oman Medical Journal, 25(2), 70-78. doi:10.5001/omj.2010.24

Rao, K. A. (2004). Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. British Journal of Sports Medicine, 38(4), 482-487. doi:10.1136/bjsm.2003.006825

Podolsky, D. K. (2002). Inflammatory Bowel Disease. New England Journal of Medicine, 347(6), 417-429. doi:10.1056/nejmra020831

Hebden, Blackshaw, Perkins, Wilson, & Spiller. (2000). Limited exposure of the healthy distal colon to orally-dosed formulation is further exaggerated in active left-sided ulcerative colitis. Alimentary Pharmacology & Therapeutics, 14(2), 155-161. doi:10.1046/j.1365-2036.2000.00697.x

Fallingborg, J., Christensen, L. A., Jacobsen, B. A., & Rasmussen, S. N. (1993). Very low intraluminal colonic pH in patients with active ulcerative colitis. Digestive Diseases and Sciences, 38(11), 1989-1993. doi:10.1007/bf01297074

Bratten, J., & Jones, M. P. (2006). New Directions in the Assessment of Gastric Function: Clinical Applications of Physiologic Measurements. Digestive Diseases, 24(3-4), 252-259. doi:10.1159/000092878

NUGENT, S. G. (2001). Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut, 48(4), 571-577. doi:10.1136/gut.48.4.571

Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028

Sinha, V. R., & Kumria, R. (2001). Pharmaceutical Research, 18(5), 557-564. doi:10.1023/a:1011033121528

Gorbach, S. L. (1971). Intestinal Microflora. Gastroenterology, 60(6), 1110-1129. doi:10.1016/s0016-5085(71)80039-2

Simon, G. L., & Gorbach, S. L. (1986). The human intestinal microflora. Digestive Diseases and Sciences, 31(S9), 147-162. doi:10.1007/bf01295996

Rubinstein, A. (1990). Microbially controlled drug delivery to the colon. Biopharmaceutics & Drug Disposition, 11(6), 465-475. doi:10.1002/bdd.2510110602

Sartor, R. B. (2008). Therapeutic correction of bacterial dysbiosis discovered by molecular techniques. Proceedings of the National Academy of Sciences, 105(43), 16413-16414. doi:10.1073/pnas.0809363105

Liu, T.-C., & Stappenbeck, T. S. (2016). Genetics and Pathogenesis of Inflammatory Bowel Disease. Annual Review of Pathology: Mechanisms of Disease, 11(1), 127-148. doi:10.1146/annurev-pathol-012615-044152

Xiao, B., & Merlin, D. (2012). Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opinion on Drug Delivery, 9(11), 1393-1407. doi:10.1517/17425247.2012.730517

Lamprecht, A., Yamamoto, H., Takeuchi, H., & Kawashima, Y. (2005). Nanoparticles Enhance Therapeutic Efficiency by Selectively Increased Local Drug Dose in Experimental Colitis in Rats. Journal of Pharmacology and Experimental Therapeutics, 315(1), 196-202. doi:10.1124/jpet.105.088146

Beloqui, A., Coco, R., Alhouayek, M., Solinís, M. Á., Rodríguez-Gascón, A., Muccioli, G. G., & Préat, V. (2013). Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. International Journal of Pharmaceutics, 454(2), 775-783. doi:10.1016/j.ijpharm.2013.05.017

Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Pharmaceutical Research, 13(12), 1838-1845. doi:10.1023/a:1016085108889

Naeem, M., Bae, J., A. Oshi, M., Kim, M.-S., Moon, H. R., Lee, B. L., … Yoo, J.-W. (2018). Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. International Journal of Nanomedicine, Volume 13, 1225-1240. doi:10.2147/ijn.s157566

Oshi, M. A., Naeem, M., Bae, J., Kim, J., Lee, J., Hasan, N., … Yoo, J.-W. (2018). Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydrate Polymers, 198, 434-442. doi:10.1016/j.carbpol.2018.06.107

Date, A. A., Hanes, J., & Ensign, L. M. (2016). Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 240, 504-526. doi:10.1016/j.jconrel.2016.06.016

Vass, P., Démuth, B., Hirsch, E., Nagy, B., Andersen, S. K., Vigh, T., … Marosi, G. (2019). Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. Journal of Controlled Release, 296, 162-178. doi:10.1016/j.jconrel.2019.01.023

Taghipour, Y. D., Bahramsoltani, R., Marques, A. M., Naseri, R., Rahimi, R., Haratipour, P., … Abdollahi, M. (2018). A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. DARU Journal of Pharmaceutical Sciences, 26(2), 229-239. doi:10.1007/s40199-018-0222-4

Zhang, M., & Merlin, D. (2018). Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflammatory Bowel Diseases, 24(7), 1401-1415. doi:10.1093/ibd/izy123

Varum, F., Freire, A. C., Bravo, R., & Basit, A. W. (2020). OPTICORE™, an innovative and accurate colonic targeting technology. International Journal of Pharmaceutics, 583, 119372. doi:10.1016/j.ijpharm.2020.119372

Lee, S. H., Bajracharya, R., Min, J. Y., Han, J.-W., Park, B. J., & Han, H.-K. (2020). Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics, 12(1), 68. doi:10.3390/pharmaceutics12010068

Nidhi, Rashid, M., Kaur, V., Hallan, S. S., Sharma, S., & Mishra, N. (2016). Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharmaceutical Journal, 24(4), 458-472. doi:10.1016/j.jsps.2014.10.001

Yoon, S.-W., Shin, D. H., & Kim, J.-S. (2019). Liposomal itraconazole formulation for the treatment of glioblastoma using inclusion complex with HP-β-CD. Journal of Pharmaceutical Investigation, 49(4), 477-483. doi:10.1007/s40005-019-00432-4

Bazan, L., Bendas, E. R., El Gazayerly, O. N., & Badawy, S. S. (2016). Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro–in-vivo evaluation. Drug Delivery, 23(9), 3339-3349. doi:10.1080/10717544.2016.1178824

Goyanes, A., Hatton, G. B., Merchant, H. A., & Basit, A. W. (2015). Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations. International Journal of Pharmaceutics, 484(1-2), 103-108. doi:10.1016/j.ijpharm.2015.02.051

Ma, C., Battat, R., Dulai, P. S., Parker, C. E., Sandborn, W. J., Feagan, B. G., & Jairath, V. (2019). Innovations in Oral Therapies for Inflammatory Bowel Disease. Drugs, 79(12), 1321-1335. doi:10.1007/s40265-019-01169-y

Bak, A., Ashford, M., & Brayden, D. J. (2018). Local delivery of macromolecules to treat diseases associated with the colon. Advanced Drug Delivery Reviews, 136-137, 2-27. doi:10.1016/j.addr.2018.10.009

Yu, A., Baker, J. R., Fioritto, A. F., Wang, Y., Luo, R., Li, S., … Sun, D. (2016). Measurement of in vivo Gastrointestinal Release and Dissolution of Three Locally Acting Mesalamine Formulations in Regions of the Human Gastrointestinal Tract. Molecular Pharmaceutics, 14(2), 345-358. doi:10.1021/acs.molpharmaceut.6b00641

Ibekwe, V. C., Fadda, H. M., McConnell, E. L., Khela, M. K., Evans, D. F., & Basit, A. W. (2008). Interplay Between Intestinal pH, Transit Time and Feed Status on the In Vivo Performance of pH Responsive Ileo-Colonic Release Systems. Pharmaceutical Research, 25(8), 1828-1835. doi:10.1007/s11095-008-9580-9

Mansuri, S., Kesharwani, P., Jain, K., Tekade, R. K., & Jain, N. K. (2016). Mucoadhesion: A promising approach in drug delivery system. Reactive and Functional Polymers, 100, 151-172. doi:10.1016/j.reactfunctpolym.2016.01.011

Agüero, L., Zaldivar-Silva, D., Peña, L., & Dias, M. L. (2017). Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers, 168, 32-43. doi:10.1016/j.carbpol.2017.03.033

Duan, H., Lü, S., Gao, C., Bai, X., Qin, H., Wei, Y., … Liu, M. (2016). Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids and Surfaces B: Biointerfaces, 145, 510-519. doi:10.1016/j.colsurfb.2016.05.038

Cong, Z., Shi, Y., Wang, Y., Wang, Y., Niu, J., Chen, N., & Xue, H. (2018). A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. International Journal of Biological Macromolecules, 107, 855-864. doi:10.1016/j.ijbiomac.2017.09.065

Gareb, B., Dijkstra, G., Kosterink, J. G. W., & Frijlink, H. W. (2019). Development of novel zero-order release budesonide tablets for the treatment of ileo-colonic inflammatory bowel disease and comparison with formulations currently used in clinical practice. International Journal of Pharmaceutics, 554, 366-375. doi:10.1016/j.ijpharm.2018.11.019

Gareb, B., Posthumus, S., Beugeling, M., Koopmans, P., Touw, D. J., Dijkstra, G., … Frijlink, H. W. (2019). Towards the Oral Treatment of Ileo-Colonic Inflammatory Bowel Disease with Infliximab Tablets: Development and Validation of the Production Process. Pharmaceutics, 11(9), 428. doi:10.3390/pharmaceutics11090428

González-Alvarez, M., Coll, C., Gonzalez-Alvarez, I., Giménez, C., Aznar, E., Martínez-Bisbal, M. C., … Sancenón, F. (2017). Gated Mesoporous Silica Nanocarriers for a «Two-Step» Targeted System to Colonic Tissue. Molecular Pharmaceutics, 14(12), 4442-4453. doi:10.1021/acs.molpharmaceut.7b00565

Deng, X.-Q., Zhang, H.-B., Wang, G.-F., Xu, D., Zhang, W.-Y., Wang, Q.-S., & Cui, Y.-L. (2019). Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. International Journal of Pharmaceutics, 570, 118644. doi:10.1016/j.ijpharm.2019.118644

Shi, X., Yan, Y., Wang, P., Sun, Y., Zhang, D., Zou, Y., … Dong, Y. (2018). In vitro and in vivo study of pH-sensitive and colon-targeting P(LE-IA-MEG) hydrogel microspheres used for ulcerative colitis therapy. European Journal of Pharmaceutics and Biopharmaceutics, 122, 70-77. doi:10.1016/j.ejpb.2017.10.003

Malviya, T., Joshi, S., Dwivedi, L. M., Baranwal, K., Shehala, Pandey, A. K., & Singh, V. (2018). Synthesis of Aloevera/Acrylonitrile based Nanoparticles for targeted drug delivery of 5-Aminosalicylic acid. International Journal of Biological Macromolecules, 106, 930-939. doi:10.1016/j.ijbiomac.2017.08.085

Chen, J., Li, X., Chen, L., & Xie, F. (2018). Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydrate Polymers, 191, 242-254. doi:10.1016/j.carbpol.2018.03.025

Günter, E. A., & Popeyko, O. V. (2016). Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydrate Polymers, 147, 490-499. doi:10.1016/j.carbpol.2016.04.026

Qiao, H., Fang, D., Chen, J., Sun, Y., Kang, C., Di, L., … Gao, Y. (2017). Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Delivery, 24(1), 233-242. doi:10.1080/10717544.2016.1245367

Morales‐Burgos, A. M., Carvajal‐Millan, E., Rascón‐Chu, A., Martínez‐López, A. L., Lizardi‐Mendoza, J., López‐Franco, Y. L., & Brown‐Bojorquez, F. (2019). Tailoring reversible insulin aggregates loaded in electrosprayed arabinoxylan microspheres intended for colon‐targeted delivery. Journal of Applied Polymer Science, 136(38), 47960. doi:10.1002/app.47960

Miramontes-Corona, C., Escalante, A., Delgado, E., Corona-González, R. I., Vázquez-Torres, H., & Toriz, G. (2020). Hydrophobic agave fructans for sustained drug delivery to the human colon. Reactive and Functional Polymers, 146, 104396. doi:10.1016/j.reactfunctpolym.2019.104396

Zhu, A. Z. X., Ho, M.-C. D., Gemski, C. K., Chuang, B.-C., Liao, M., & Xia, C. Q. (2016). Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: a Comparison with Physiologically Based Pharmacokinetic Modeling. The AAPS Journal, 18(6), 1512-1523. doi:10.1208/s12248-016-9972-4

Barclay, T. G., Day, C. M., Petrovsky, N., & Garg, S. (2019). Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers, 221, 94-112. doi:10.1016/j.carbpol.2019.05.067

Naeem, M., Kim, W., Cao, J., Jung, Y., & Yoo, J.-W. (2014). Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids and Surfaces B: Biointerfaces, 123, 271-278. doi:10.1016/j.colsurfb.2014.09.026

Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375

Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 16(6), 2418-2429. doi:10.1021/acs.molpharmaceut.9b00041

Rafii, F., Franklin, W., & Cerniglia, C. E. (1990). Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Applied and Environmental Microbiology, 56(7), 2146-2151. doi:10.1128/aem.56.7.2146-2151.1990

Kaur, R., Gulati, M., & Singh, S. K. (2017). Role of synbiotics in polysaccharide assisted colon targeted microspheres of mesalamine for the treatment of ulcerative colitis. International Journal of Biological Macromolecules, 95, 438-450. doi:10.1016/j.ijbiomac.2016.11.066

Ferri, D., Gaviña, P., Parra, M., Costero, A. M., El Haskouri, J., Amorós, P., … Martínez-Máñez, R. (2018). Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 5(8), 180873. doi:10.1098/rsos.180873

Ma, Z.-G., Ma, R., Xiao, X.-L., Zhang, Y.-H., Zhang, X.-Z., Hu, N., … Sun, Z.-J. (2016). Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomaterialia, 44, 323-331. doi:10.1016/j.actbio.2016.08.021

Karrout, Y., Dubuquoy, L., Piveteau, C., Siepmann, F., Moussa, E., Wils, D., … Siepmann, J. (2015). In vivo efficacy of microbiota-sensitive coatings for colon targeting: A promising tool for IBD therapy. Journal of Controlled Release, 197, 121-130. doi:10.1016/j.jconrel.2014.11.006

Kumar, B., Kulanthaivel, S., Mondal, A., Mishra, S., Banerjee, B., Bhaumik, A., … Giri, S. (2017). Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids and Surfaces B: Biointerfaces, 150, 352-361. doi:10.1016/j.colsurfb.2016.10.049

Yamada, K., Iwao, Y., Bani-Jaber, A., Noguchi, S., & Itai, S. (2015). Preparation and Evaluation of Newly Developed Chitosan Salt Coating Dispersions for Colon Delivery without Requiring Overcoating. CHEMICAL & PHARMACEUTICAL BULLETIN, 63(10), 799-806. doi:10.1248/cpb.c15-00308

Amidon, S., Brown, J. E., & Dave, V. S. (2015). Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech, 16(4), 731-741. doi:10.1208/s12249-015-0350-9

Dagli, Ü., Balk, M., Yücel, D., Ülker, A., Över, H., Saydam, G., & Şahin, B. (1997). The Role of Reactive Oxygen Metabolites in Ulcerative Colitis. Inflammatory Bowel Diseases, 3(4), 260-264. doi:10.1097/00054725-199712000-00003

Simmonds, N. J., & Rampton, D. S. (1993). Inflammatory bowel disease--a radical view. Gut, 34(7), 865-868. doi:10.1136/gut.34.7.865

GRISHAM, M. (1994). Oxidants and free radicals in inflammatory bowel disease. The Lancet, 344(8926), 859-861. doi:10.1016/s0140-6736(94)92831-2

Zhang, Q., Tao, H., Lin, Y., Hu, Y., An, H., Zhang, D., … Zhang, J. (2016). A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials, 105, 206-221. doi:10.1016/j.biomaterials.2016.08.010

Sedghi, S., Fields, J. Z., Klamut, M., Urban, G., Durkin, M., Winship, D., … Keshavarzian, A. (1993). Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut, 34(9), 1191-1197. doi:10.1136/gut.34.9.1191

Simmonds, N. J., Allen, R. E., Stevens, T. R. J., Niall, R., Van Someren, M., Blake, D. R., & Rampton, D. S. (1992). Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology, 103(1), 186-196. doi:10.1016/0016-5085(92)91112-h

Vong, L. B., Mo, J., Abrahamsson, B., & Nagasaki, Y. (2015). Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. Journal of Controlled Release, 210, 19-25. doi:10.1016/j.jconrel.2015.05.275

Vong, L. B., & Nagasaki, Y. (2016). Combination Treatment of Murine Colon Cancer with Doxorubicin and Redox Nanoparticles. Molecular Pharmaceutics, 13(2), 449-455. doi:10.1021/acs.molpharmaceut.5b00676

Babbs, C. F. (1992). Oxygen radicals in ulcerative colitis. Free Radical Biology and Medicine, 13(2), 169-181. doi:10.1016/0891-5849(92)90079-v

Jin, Y., Kotakadi, V. S., Ying, L., Hofseth, A. B., Cui, X., Wood, P. A., … Hofseth, L. J. (2008). American ginseng suppresses inflammation and DNA damage associated with mouse colitis. Carcinogenesis, 29(12), 2351-2359. doi:10.1093/carcin/bgn211

Seguí, J., Gironella, M., Sans, M., Granell, S., Gil, F., Gimeno, M., … Panés, J. (2004). Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. Journal of Leukocyte Biology, 76(3), 537-544. doi:10.1189/jlb.0304196

Wilcox, C. S. (2010). Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacology & Therapeutics, 126(2), 119-145. doi:10.1016/j.pharmthera.2010.01.003

Xiao, B., Laroui, H., Viennois, E., Ayyadurai, S., Charania, M. A., Zhang, Y., … Merlin, D. (2014). Nanoparticles With Surface Antibody Against CD98 and Carrying CD98 Small Interfering RNA Reduce Colitis in Mice. Gastroenterology, 146(5), 1289-1300.e19. doi:10.1053/j.gastro.2014.01.056

Fromont Hankard, Cezard, Aigrain, Navarro, & Peuchmaur. (1998). CD44 variant expression in inflammatory colonic mucosa is not disease specific but associated with increased crypt cell proliferation. Histopathology, 32(4), 317-321. doi:10.1046/j.1365-2559.1998.00404.x

Farkas, S., Hornung, M., Sattler, C., Anthuber, M., Gunthert, U., Herfarth, H., … Wittig, B. M. (2005). Short-term treatment with anti-CD44v7 antibody, but not CD44v4, restores the gut mucosa in established chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clinical and Experimental Immunology, 142(2), 260-267. doi:10.1111/j.1365-2249.2005.02911.x

Xiao, B., Zhang, Z., Viennois, E., Kang, Y., Zhang, M., Han, M. K., … Merlin, D. (2016). Combination Therapy for Ulcerative Colitis: Orally Targeted Nanoparticles Prevent Mucosal Damage and Relieve Inflammation. Theranostics, 6(12), 2250-2266. doi:10.7150/thno.15710

Zhang, M., Xu, C., Liu, D., Han, M. K., Wang, L., & Merlin, D. (2017). Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis. Journal of Crohn’s and Colitis, 12(2), 217-229. doi:10.1093/ecco-jcc/jjx115

Dou, Y.-X., Zhou, J.-T., Wang, T.-T., Huang, Y.-F., Chen, P., Xie, Y.-L., … Zeng, H.-F. (2018). Self-nanoemulsfiying drug delivery system of bruceine D: a new approach for anti-ulcerative colitis. International Journal of Nanomedicine, Volume 13, 5887-5907. doi:10.2147/ijn.s174146

Higa, L. H., Jerez, H. E., de Farias, M. A., Portugal, R. V., Romero, E. L., & Morilla, M. J. (2017). Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine, 12(10), 1165-1175. doi:10.2217/nnm-2016-0437

Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., … Merlin, D. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. doi:10.1016/j.biomaterials.2016.06.018

Melero, A., Draheim, C., Hansen, S., Giner, E., Carreras, J. J., Talens-Visconti, R., … Lehr, C.-M. (2017). Targeted delivery of Cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 119, 361-371. doi:10.1016/j.ejpb.2017.07.004

Wang, J.-L., Gan, Y.-J., Iqbal, S., Jiang, W., Yuan, Y.-Y., & Wang, J. (2018). Delivery of tacrolimus with cationic lipid-assisted nanoparticles for ulcerative colitis therapy. Biomaterials Science, 6(7), 1916-1922. doi:10.1039/c8bm00463c

Sun, Q., Luan, L., Arif, M., Li, J., Dong, Q.-J., Gao, Y., … Liu, C.-G. (2018). Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydrate Polymers, 189, 352-359. doi:10.1016/j.carbpol.2017.12.021

Deng, Z., Rong, Y., Teng, Y., Mu, J., Zhuang, X., Tseng, M., … Zhang, H.-G. (2017). Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Molecular Therapy, 25(7), 1641-1654. doi:10.1016/j.ymthe.2017.01.025

Hatton, G. B., Yadav, V., Basit, A. W., & Merchant, H. A. (2015). Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. Journal of Pharmaceutical Sciences, 104(9), 2747-2776. doi:10.1002/jps.24365

Hatton, G. B., Madla, C. M., Rabbie, S. C., & Basit, A. W. (2018). All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. International Journal of Pharmaceutics, 548(1), 408-422. doi:10.1016/j.ijpharm.2018.06.054

Kim, M. S., Yeom, D. W., Kim, S. R., Yoon, H. Y., Kim, C. H., Son, H. Y., … Choi, Y. W. (2016). Development of a chitosan based double layer-coated tablet as a platform for colon-specific drug delivery. Drug Design, Development and Therapy, Volume11, 45-57. doi:10.2147/dddt.s123412

IBEKWE, V. C., KHELA, M. K., EVANS, D. F., & BASIT, A. W. (2008). A new concept in colonic drug targeting: a combined pH-responsive and bacterially-triggered drug delivery technology. Alimentary Pharmacology & Therapeutics, 28(7), 911-916. doi:10.1111/j.1365-2036.2008.03810.x

Allegretti, J. R., Fischer, M., Sagi, S. V., Bohm, M. E., Fadda, H. M., Ranmal, S. R., … Kassam, Z. (2018). Fecal Microbiota Transplantation Capsules with Targeted Colonic Versus Gastric Delivery in Recurrent Clostridium difficile Infection: A Comparative Cohort Analysis of High and Lose Dose. Digestive Diseases and Sciences, 64(6), 1672-1678. doi:10.1007/s10620-018-5396-6

Varum, F., Freire, A. C., Fadda, H. M., Bravo, R., & Basit, A. W. (2020). A dual pH and microbiota-triggered coating (Phloral™) for fail-safe colonic drug release. International Journal of Pharmaceutics, 583, 119379. doi:10.1016/j.ijpharm.2020.119379

Nguyen, M. N. U., Tran, P. H. L., & Tran, T. T. D. (2019). A single-layer film coating for colon-targeted oral delivery. International Journal of Pharmaceutics, 559, 402-409. doi:10.1016/j.ijpharm.2019.01.066

Huang, Z., Gan, J., Jia, L., Guo, G., Wang, C., Zang, Y., … Dong, L. (2015). An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials, 48, 26-36. doi:10.1016/j.biomaterials.2015.01.013

Hou, L., Shi, Y., Jiang, G., Liu, W., Han, H., Feng, Q., … Zhang, Z. (2016). Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology, 27(31), 315105. doi:10.1088/0957-4484/27/31/315105

Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007

Maurer, J. M., Hofman, S., Schellekens, R. C. A., Tonnis, W. F., Dubois, A. O. T., Woerdenbag, H. J., … Frijlink, H. W. (2016). Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: A feasibility study. International Journal of Pharmaceutics, 505(1-2), 175-186. doi:10.1016/j.ijpharm.2016.03.027

Alange, V. V., Birajdar, R. P., & Kulkarni, R. V. (2017). Functionally modified polyacrylamide- graft -gum karaya pH-sensitive spray dried microspheres for colon targeting of an anti-cancer drug. International Journal of Biological Macromolecules, 102, 829-839. doi:10.1016/j.ijbiomac.2017.04.023

Xiao, B., Xu, Z., Viennois, E., Zhang, Y., Zhang, Z., Zhang, M., … Merlin, D. (2017). Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Molecular Therapy, 25(7), 1628-1640. doi:10.1016/j.ymthe.2016.11.020

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem