- -

Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant

Show full item record

Sánchez, S.; Hidalgo, V.; Velasco, M.; Puga, D.; López Jiménez, PA.; Pérez Sánchez, M. (2021). Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant. Journal of Applied Research in Technology & Engineering. 2(2):51-62. https://doi.org/10.4995/jarte.2021.15056

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169559

Files in this item

Item Metadata

Title: Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant
Author: Sánchez, Santiago Hidalgo, Victor Velasco, Martin Puga, Diana López Jiménez, Petra Amparo Pérez Sánchez, Modesto
UPV Unit: Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Issued date:
Abstract:
[EN] The present paper focuses on the selection of parameters that maximize electrical energy production of a horizontal axis wind turbine using Python programming language. The study takes as reference turbines of Villonaco ...[+]
Subjects: Parametric study , Wind turbine , Python , Weibull , Energy
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Journal of Applied Research in Technology & Engineering. (eissn: 2695-8821 )
DOI: 10.4995/jarte.2021.15056
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/jarte.2021.15056
Project ID:
info:eu-repo/grantAgreement/EPN//PII-DIM-2019-06/
Thanks:
The authors gratefully acknowledge the financial support provided by Escuela Politécnica Nacional for the development of the project PII-DIM-2019-06
Type: Artículo

References

Adaramola, M. (2014). Wind turbine technology: Principles and design. Apple Academic Press, Inc. https://doi.org/10.1016/s0038-092x(97)82047-6

Arconel. (2015). Ecuador posee un 51,78% de energía renovable. https://www.regulacionelectrica.gob.ec/ecuador-posee-un-5155-de-energia-renovable/%0A

Bakırcı, M., & Yılmaz, S. (2018). Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal, 21(6), 1128-1142. https://doi.org/10.1016/j.jestch.2018.05.006 [+]
Adaramola, M. (2014). Wind turbine technology: Principles and design. Apple Academic Press, Inc. https://doi.org/10.1016/s0038-092x(97)82047-6

Arconel. (2015). Ecuador posee un 51,78% de energía renovable. https://www.regulacionelectrica.gob.ec/ecuador-posee-un-5155-de-energia-renovable/%0A

Bakırcı, M., & Yılmaz, S. (2018). Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal, 21(6), 1128-1142. https://doi.org/10.1016/j.jestch.2018.05.006

Biadgo, A.M., & Aynekulu, G. (2017). Aerodynamic design of horizontal axis wind turbine blades. FME Transactions, 45(4), 647-660. https://doi.org/10.5937/fmet1704647M

Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind Energy Handbook. In Wind Energy Handbook (First edit). Wiley. https://doi.org/10.1002/9781119992714.ch9

Carta González, J.A., Calero Pérez, R., Colmenar Santos, A., & Castro Gil, M.A. (2009). Centrales de energías renovables: Generación eléctrica con energías renovables. Pearson Educación S.A.

Cochancela, J., & Astudillo, P. (2012). Análisis energético de centrales eólicas. In Universidad de Cuenca. http://dspace.ucuenca.edu.ec/jspui/bitstream/123456789/5022/1/Tesis.pdf

Corporación Eléctrica del Ecuador. (2015). Informe de rendición de cuentas 2014 Unidad de Negocio GEN-SUR. https://www.celec.gob.ec/gensur/index.php

Corporación Eléctrica del Ecuador. (2016a). Central Eólica Villonaco genera el 152% de lo planificado CE-LEC EPGENSUR. https://www.celec.gob.ec/gensur/index.php/67-central-eolica-villonaco-genera-el-152-de-lo-planificado

Corporación Eléctrica del Ecuador. (2016b). Informe de rendición de cuentas 2015 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php

Corporación Eléctrica del Ecuador. (2017). Informe de Rendición de Cuentas 2016 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php

Corporación Eléctrica del Ecuador. (2018). Informe de rendición de cuentas 2017 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php

Corporación Eléctrica del Ecuador. (2019a). Informe de rendición de cuentas 2018 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php

Corporación Eléctrica del Ecuador. (2019b). Producción anual de la Central Eólica Villonaco. https://www.celec.gob.ec/gensur/index.php/cev/central-eolica-villonaco-en-cifras

Dehouck, V., Lateb, M., Sacheau, J., & Fellouah, H. (2018). Application of the BEM Theory to Design HAWT Blades. Journal of Solar Energy Engineering, Transactions of the ASME, 140(1), 014501. https://doi.org/10.1115/1.4038046

Dereje, G., & Sirahbizu, B. (2019). Design and Analysis of 2MW Horizontal Axis Wind Turbine Blade. International Journal of Innovative Science, Engineering & Technology, 6(5).

El Khchine, Y., & Sriti, M. (2018). Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal axis wind turbine blade (HAWT). Technische Mechanik, 38(2), 191-202. https://doi.org/10.24352/UB.OVGU-2018-028

Fuglsang, P., Bak, C., Gaunaa, M., & Antoniou, I. (2004). Design and verification of the Risø-B1 airfoil family for wind turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 126(4), 1002-1010. https://doi.org/10.1115/1.1766024

Ge, M., Fang, L., & Tian, D. (2015). Influence of reynolds number on multi-objective aerodynamic design of a wind turbine blade. PLoS ONE, 10(11), 1-25. https://doi.org/10.1371/journal.pone.0141848

Goldwind. (2015). Goldwind 1.5MW. https://www.goldwindamericas.com/15-mw-pmdd

Gul, M., Tai, N., Huang, W., Nadeem, M.H., & Yu, M. (2019). Assessment of wind power potential and economic analysis at Hyderabad in Pakistan: Powering to local communities using wind power. Sustainability, 11(5), 1391. https://doi.org/10.3390/su11051391

Hansen, M.O.L. (2008). Aerodynamics of Wind Turbines (Second ed, Vol. 53, Issue 9). Earthscan.

Hidalgo, V., Luo, X.W., Escaler, X., Ji, B., & Aguinaga, A. (2015). Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. Journal of Hydrodynamics, 27(6), 815-823. https://doi.org/10.1016/S1001-6058(15)60544-3

Instituto Nacional de Eficiencia Energética y Energías Renovables. (2014). Análisis del comportamiento de un parque eólico en condiciones extremas.

International Energy Agency. (2019). Renewables - World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019/renewables#abstract

Jamieson, P. (2018). Innovation in Wind Turbine Design (Second ed.). Wiley. https://doi.org/10.1002/9781119137924

Khaled, M., Mohamed Ibrahim, M., ElSayed Abdel Hamed, H., & Abdel Gawad, A.F. (2017). Aerodynamic Design and Blade Angle Analysis of a Small Horizontal-Axis Wind Turbine. American Journal of Modern Energy, 3(2), 23-27. https://doi.org/10.11648/j.ajme.20170302.12

Lanzafame, R., & Messina, M. (2010). Horizontal axis wind turbine working at maximum power coefficient continuously. Renewable Energy, 35(1), 301-306. https://doi.org/10.1016/j.renene.2009.06.020

Lee, J.T., Kim, H.G., Kang, Y.H., & Kim, J.Y. (2019). Determining the optimized hub height of wind turbine using the wind resource map of South Korea. Energies, 12(15), 2949. https://doi.org/10.3390/en12152949

Letcher, T.M. (2017). Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. Elsevier. https://doi.org/10.1016/B978-0-12-809451-8.00001-1

Mahmood, F.H., Resen, A.K., & Khamees, A.B. (2019). Wind characteristic analysis based on Weibull distribution of AlSalman site, Iraq. Energy Reports, 6(September), 79-87. https://doi.org/10.1016/j.egyr.2019.10.021

Mamadaminov, U.M. (2013). Review of Airfoil Structure for Wind Turbine Blades. Department of Electrical Engineering and Renewable Energy REE, 515., September 2013, 1-8.

Manwell, J.F., McGowan, J.G., & Rogers, A.L. (2009). Wind energy explained: theory, design and application (Second ed.). John Wiley & Sons. https://doi.org/10.1002/9781119994367

Massachusetts Institute of Technology. (2013). Xfoil. https://web.mit.edu/drela/Public/web/xfoil/

Mathew, S., & Philip, G.S. (2011). Advances in Wind Energy Conversion Technology. Springer. https://doi.org/10.1007/978-3-540-88258-9

Ministerio de Electricidad y Energía Renovable. (2013). Atlas Eólico del Ecuador con fines de generación eléctrica.

Mohammadi, M., Mohammadi, A., & Farahat, S. (2016). A new method for horizontal axis wind turbine (HAWT) blade optimization. International Journal of Renewable Energy Development, 5(1), 1-8. https://doi.org/10.14710/ijred.5.1.1-8

Najafian Ashrafi, Z., Ghaderi, M., & Sedaghat, A. (2015). Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control. Energy Conversion and Management, 93, 349-356. https://doi.org/10.1016/j.enconman.2015.01.048

Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1-11. https://doi.org/10.1186/2251-6832-3-7

Rehman, S., Alam, M.M., Alhems, L.M., & Rafique, M.M. (2018). Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement-A Review. Energies, 11(3). https://doi.org/10.3390/en11030506

Renewable Energy World. (2019). Wind Power Technology. https://www.renewableenergyworld.com/types-of-renewable-energy/wind-power-tech/#gref

Ritchie, H., & Roser, M. (2017). Renewable Energy. Our World in Data. https://ourworldindata.org/renewable-energy Saint-Drenan, Y.M., Besseau, R., Jansen, M., Staffell, I., Troccoli, A., Dubus, L., Schmidt, J., Gruber, K., Simões, S.G., &

Heier, S. (2019). A parametric model for wind turbine power curves incorporating environmental conditions. Renewable Energy, 157, 754-768. https://doi.org/10.1016/j.renene.2020.04.123

Takeyeldein, M.M., Lazim, T.M., Nik Mohd, N.A.R., Ishak, I.S., & Ali, E.A. (2019). Wind turbine design using thin airfoil SD2030. Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 6(2), 114-123. https://doi.org/10.5109/2321003

Topaloǧlu, F., & Pehlivan, H. (2018). Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP. Advances in Meteorology, 2018. https://doi.org/10.1155/2018/2716868

Viscosidad del aire. (2012). https://didactica.fisica.uson.mx/tablas/viscosidad.htm

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record