- -

Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez, Santiago es_ES
dc.contributor.author Hidalgo, Victor es_ES
dc.contributor.author Velasco, Martin es_ES
dc.contributor.author Puga, Diana es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.contributor.author Pérez Sánchez, Modesto es_ES
dc.date.accessioned 2021-07-20T10:13:00Z
dc.date.available 2021-07-20T10:13:00Z
dc.date.issued 2021-07-16
dc.identifier.uri http://hdl.handle.net/10251/169559
dc.description.abstract [EN] The present paper focuses on the selection of parameters that maximize electrical energy production of a horizontal axis wind turbine using Python programming language. The study takes as reference turbines of Villonaco wind field in Ecuador. For this aim, the Blade Element Momentum (BEM) theory was implemented, to define rotor geometry and power curve. Furthermore, wind speeds were analyzed using the Weibull probability distribution and the most probable speed was 10.50 m/s. The results were compared with mean annual energy production of a Villonaco’s wind turbine to validate the model. Turbine height, rated wind speed and rotor radius were the selected parameters to determine the influence in generated energy. Individual increment in rotor radius and rated wind speed cause a significant increase in energy produced. While the increment in turbine’s height reduces energy generated by 0.88%. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support provided by Escuela Politécnica Nacional for the development of the project PII-DIM-2019-06 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Applied Research in Technology & Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Parametric study es_ES
dc.subject Wind turbine es_ES
dc.subject Python es_ES
dc.subject Weibull es_ES
dc.subject Energy es_ES
dc.title Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jarte.2021.15056
dc.relation.projectID info:eu-repo/grantAgreement/EPN//PII-DIM-2019-06/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Sánchez, S.; Hidalgo, V.; Velasco, M.; Puga, D.; López Jiménez, PA.; Pérez Sánchez, M. (2021). Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant. Journal of Applied Research in Technology & Engineering. 2(2):51-62. https://doi.org/10.4995/jarte.2021.15056 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jarte.2021.15056 es_ES
dc.description.upvformatpinicio 51 es_ES
dc.description.upvformatpfin 62 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2695-8821
dc.relation.pasarela OJS\15056 es_ES
dc.contributor.funder Escuela Politécnica Nacional, Ecuador es_ES
dc.description.references Adaramola, M. (2014). Wind turbine technology: Principles and design. Apple Academic Press, Inc. https://doi.org/10.1016/s0038-092x(97)82047-6 es_ES
dc.description.references Arconel. (2015). Ecuador posee un 51,78% de energía renovable. https://www.regulacionelectrica.gob.ec/ecuador-posee-un-5155-de-energia-renovable/%0A es_ES
dc.description.references Bakırcı, M., & Yılmaz, S. (2018). Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines. Engineering Science and Technology, an International Journal, 21(6), 1128-1142. https://doi.org/10.1016/j.jestch.2018.05.006 es_ES
dc.description.references Biadgo, A.M., & Aynekulu, G. (2017). Aerodynamic design of horizontal axis wind turbine blades. FME Transactions, 45(4), 647-660. https://doi.org/10.5937/fmet1704647M es_ES
dc.description.references Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind Energy Handbook. In Wind Energy Handbook (First edit). Wiley. https://doi.org/10.1002/9781119992714.ch9 es_ES
dc.description.references Carta González, J.A., Calero Pérez, R., Colmenar Santos, A., & Castro Gil, M.A. (2009). Centrales de energías renovables: Generación eléctrica con energías renovables. Pearson Educación S.A. es_ES
dc.description.references Cochancela, J., & Astudillo, P. (2012). Análisis energético de centrales eólicas. In Universidad de Cuenca. http://dspace.ucuenca.edu.ec/jspui/bitstream/123456789/5022/1/Tesis.pdf es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2015). Informe de rendición de cuentas 2014 Unidad de Negocio GEN-SUR. https://www.celec.gob.ec/gensur/index.php es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2016a). Central Eólica Villonaco genera el 152% de lo planificado CE-LEC EPGENSUR. https://www.celec.gob.ec/gensur/index.php/67-central-eolica-villonaco-genera-el-152-de-lo-planificado es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2016b). Informe de rendición de cuentas 2015 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2017). Informe de Rendición de Cuentas 2016 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2018). Informe de rendición de cuentas 2017 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2019a). Informe de rendición de cuentas 2018 Unidad de Negocio GENSUR. https://www.celec.gob.ec/gensur/index.php es_ES
dc.description.references Corporación Eléctrica del Ecuador. (2019b). Producción anual de la Central Eólica Villonaco. https://www.celec.gob.ec/gensur/index.php/cev/central-eolica-villonaco-en-cifras es_ES
dc.description.references Dehouck, V., Lateb, M., Sacheau, J., & Fellouah, H. (2018). Application of the BEM Theory to Design HAWT Blades. Journal of Solar Energy Engineering, Transactions of the ASME, 140(1), 014501. https://doi.org/10.1115/1.4038046 es_ES
dc.description.references Dereje, G., & Sirahbizu, B. (2019). Design and Analysis of 2MW Horizontal Axis Wind Turbine Blade. International Journal of Innovative Science, Engineering & Technology, 6(5). es_ES
dc.description.references El Khchine, Y., & Sriti, M. (2018). Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal axis wind turbine blade (HAWT). Technische Mechanik, 38(2), 191-202. https://doi.org/10.24352/UB.OVGU-2018-028 es_ES
dc.description.references Fuglsang, P., Bak, C., Gaunaa, M., & Antoniou, I. (2004). Design and verification of the Risø-B1 airfoil family for wind turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 126(4), 1002-1010. https://doi.org/10.1115/1.1766024 es_ES
dc.description.references Ge, M., Fang, L., & Tian, D. (2015). Influence of reynolds number on multi-objective aerodynamic design of a wind turbine blade. PLoS ONE, 10(11), 1-25. https://doi.org/10.1371/journal.pone.0141848 es_ES
dc.description.references Goldwind. (2015). Goldwind 1.5MW. https://www.goldwindamericas.com/15-mw-pmdd es_ES
dc.description.references Gul, M., Tai, N., Huang, W., Nadeem, M.H., & Yu, M. (2019). Assessment of wind power potential and economic analysis at Hyderabad in Pakistan: Powering to local communities using wind power. Sustainability, 11(5), 1391. https://doi.org/10.3390/su11051391 es_ES
dc.description.references Hansen, M.O.L. (2008). Aerodynamics of Wind Turbines (Second ed, Vol. 53, Issue 9). Earthscan. es_ES
dc.description.references Hidalgo, V., Luo, X.W., Escaler, X., Ji, B., & Aguinaga, A. (2015). Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. Journal of Hydrodynamics, 27(6), 815-823. https://doi.org/10.1016/S1001-6058(15)60544-3 es_ES
dc.description.references Instituto Nacional de Eficiencia Energética y Energías Renovables. (2014). Análisis del comportamiento de un parque eólico en condiciones extremas. es_ES
dc.description.references International Energy Agency. (2019). Renewables - World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019/renewables#abstract es_ES
dc.description.references Jamieson, P. (2018). Innovation in Wind Turbine Design (Second ed.). Wiley. https://doi.org/10.1002/9781119137924 es_ES
dc.description.references Khaled, M., Mohamed Ibrahim, M., ElSayed Abdel Hamed, H., & Abdel Gawad, A.F. (2017). Aerodynamic Design and Blade Angle Analysis of a Small Horizontal-Axis Wind Turbine. American Journal of Modern Energy, 3(2), 23-27. https://doi.org/10.11648/j.ajme.20170302.12 es_ES
dc.description.references Lanzafame, R., & Messina, M. (2010). Horizontal axis wind turbine working at maximum power coefficient continuously. Renewable Energy, 35(1), 301-306. https://doi.org/10.1016/j.renene.2009.06.020 es_ES
dc.description.references Lee, J.T., Kim, H.G., Kang, Y.H., & Kim, J.Y. (2019). Determining the optimized hub height of wind turbine using the wind resource map of South Korea. Energies, 12(15), 2949. https://doi.org/10.3390/en12152949 es_ES
dc.description.references Letcher, T.M. (2017). Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. Elsevier. https://doi.org/10.1016/B978-0-12-809451-8.00001-1 es_ES
dc.description.references Mahmood, F.H., Resen, A.K., & Khamees, A.B. (2019). Wind characteristic analysis based on Weibull distribution of AlSalman site, Iraq. Energy Reports, 6(September), 79-87. https://doi.org/10.1016/j.egyr.2019.10.021 es_ES
dc.description.references Mamadaminov, U.M. (2013). Review of Airfoil Structure for Wind Turbine Blades. Department of Electrical Engineering and Renewable Energy REE, 515., September 2013, 1-8. es_ES
dc.description.references Manwell, J.F., McGowan, J.G., & Rogers, A.L. (2009). Wind energy explained: theory, design and application (Second ed.). John Wiley & Sons. https://doi.org/10.1002/9781119994367 es_ES
dc.description.references Massachusetts Institute of Technology. (2013). Xfoil. https://web.mit.edu/drela/Public/web/xfoil/ es_ES
dc.description.references Mathew, S., & Philip, G.S. (2011). Advances in Wind Energy Conversion Technology. Springer. https://doi.org/10.1007/978-3-540-88258-9 es_ES
dc.description.references Ministerio de Electricidad y Energía Renovable. (2013). Atlas Eólico del Ecuador con fines de generación eléctrica. es_ES
dc.description.references Mohammadi, M., Mohammadi, A., & Farahat, S. (2016). A new method for horizontal axis wind turbine (HAWT) blade optimization. International Journal of Renewable Energy Development, 5(1), 1-8. https://doi.org/10.14710/ijred.5.1.1-8 es_ES
dc.description.references Najafian Ashrafi, Z., Ghaderi, M., & Sedaghat, A. (2015). Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control. Energy Conversion and Management, 93, 349-356. https://doi.org/10.1016/j.enconman.2015.01.048 es_ES
dc.description.references Oyedepo, S.O., Adaramola, M.S., & Paul, S.S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in South-East Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 1-11. https://doi.org/10.1186/2251-6832-3-7 es_ES
dc.description.references Rehman, S., Alam, M.M., Alhems, L.M., & Rafique, M.M. (2018). Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement-A Review. Energies, 11(3). https://doi.org/10.3390/en11030506 es_ES
dc.description.references Renewable Energy World. (2019). Wind Power Technology. https://www.renewableenergyworld.com/types-of-renewable-energy/wind-power-tech/#gref es_ES
dc.description.references Ritchie, H., & Roser, M. (2017). Renewable Energy. Our World in Data. https://ourworldindata.org/renewable-energy Saint-Drenan, Y.M., Besseau, R., Jansen, M., Staffell, I., Troccoli, A., Dubus, L., Schmidt, J., Gruber, K., Simões, S.G., & es_ES
dc.description.references Heier, S. (2019). A parametric model for wind turbine power curves incorporating environmental conditions. Renewable Energy, 157, 754-768. https://doi.org/10.1016/j.renene.2020.04.123 es_ES
dc.description.references Takeyeldein, M.M., Lazim, T.M., Nik Mohd, N.A.R., Ishak, I.S., & Ali, E.A. (2019). Wind turbine design using thin airfoil SD2030. Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 6(2), 114-123. https://doi.org/10.5109/2321003 es_ES
dc.description.references Topaloǧlu, F., & Pehlivan, H. (2018). Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP. Advances in Meteorology, 2018. https://doi.org/10.1155/2018/2716868 es_ES
dc.description.references Viscosidad del aire. (2012). https://didactica.fisica.uson.mx/tablas/viscosidad.htm es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem