- -

Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system

Mostrar el registro completo del ítem

Pastor, JV.; García-Oliver, JM.; García Martínez, A.; Mico Reche, C. (2020). Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system. Journal of Cleaner Production. 271:1-13. https://doi.org/10.1016/j.jclepro.2020.122499

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169636

Ficheros en el ítem

Metadatos del ítem

Título: Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system
Autor: Pastor, José V. García-Oliver, José M García Martínez, Antonio Mico Reche, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The use of alternative fuels in compression ignition engines, either completely or partially replacing the conventional ones, have potential to reduce pollutant emissions (especially soot). However, some of these fuels ...[+]
Palabras clave: Dieseline , Compression ignition engine , Laser plasma ignition , Alternative fuel , Soot reduction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Cleaner Production. (issn: 0959-6526 )
DOI: 10.1016/j.jclepro.2020.122499
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jclepro.2020.122499
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
Agradecimientos:
The authors acknowledge that this research work has been partly funded by the Government of Spain and FEDER under TRANCO project (TRA2017-87694-R).
Tipo: Artículo

References

Ahmed, W., & Sarkar, B. (2018). Impact of carbon emissions in a sustainable supply chain management for a second generation biofuel. Journal of Cleaner Production, 186, 807-820. doi:10.1016/j.jclepro.2018.02.289

Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389-3413. doi:10.1016/j.proci.2016.09.009

Bakker, P. C., Maes, N., & Dam, N. (2017). The potential of on- and off-resonant formaldehyde imaging combined with bootstrapping in diesel sprays. Combustion and Flame, 182, 20-27. doi:10.1016/j.combustflame.2017.03.032 [+]
Ahmed, W., & Sarkar, B. (2018). Impact of carbon emissions in a sustainable supply chain management for a second generation biofuel. Journal of Cleaner Production, 186, 807-820. doi:10.1016/j.jclepro.2018.02.289

Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389-3413. doi:10.1016/j.proci.2016.09.009

Bakker, P. C., Maes, N., & Dam, N. (2017). The potential of on- and off-resonant formaldehyde imaging combined with bootstrapping in diesel sprays. Combustion and Flame, 182, 20-27. doi:10.1016/j.combustflame.2017.03.032

Barrientos, E. J., Lapuerta, M., & Boehman, A. L. (2013). Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combustion and Flame, 160(8), 1484-1498. doi:10.1016/j.combustflame.2013.02.024

Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Bermúdez, V., García, J. M., Juliá, E., & Martínez, S. (2003). Engine with Optically Accessible Cylinder Head: A Research Tool for Injection and Combustion Processes. SAE Technical Paper Series. doi:10.4271/2003-01-1110

Dale, J. D., Smy, P. R., & Clements, R. M. (1978). Laser Ignited Internal Combustion Engine - An Experimental Study. SAE Technical Paper Series. doi:10.4271/780329

Gómez, A., García-Contreras, R., Soriano, J. A., & Mata, C. (2020). Comparative study of the opacity tendency of alternative diesel fuels blended with gasoline. Fuel, 264, 116860. doi:10.1016/j.fuel.2019.116860

Han, D., Wang, C., Duan, Y., Tian, Z., & Huang, Z. (2014). An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system. Energy, 75, 513-519. doi:10.1016/j.energy.2014.08.006

Higgins, B., & Siebers, D. L. (2001). Measurement of the Flame Lift-Off Location on DI Diesel Sprays Using OH Chemiluminescence. SAE Technical Paper Series. doi:10.4271/2001-01-0918

Hossain, A. K., & Davies, P. A. (2010). Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renewable Energy, 35(1), 1-13. doi:10.1016/j.renene.2009.05.009

Hu, Y., Wang, Z., & Li, X. (2020). Impact of policies on electric vehicle diffusion: An evolutionary game of small world network analysis. Journal of Cleaner Production, 265, 121703. doi:10.1016/j.jclepro.2020.121703

Hwang, J., Kim, W., Bae, C., Choe, W., Cha, J., & Woo, S. (2017). Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine. Applied Energy, 205, 562-576. doi:10.1016/j.apenergy.2017.07.129

Kim, H., & Choi, B. (2008). Effect of ethanol–diesel blend fuels on emission and particle size distribution in a common-rail direct injection diesel engine with warm-up catalytic converter. Renewable Energy, 33(10), 2222-2228. doi:10.1016/j.renene.2008.01.002

König, A., Ulonska, K., Mitsos, A., & Viell, J. (2019). Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity. Energy & Fuels, 33(2), 1659-1672. doi:10.1021/acs.energyfuels.8b03790

Kumar, S., Cho, J. H., Park, J., & Moon, I. (2013). Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renewable and Sustainable Energy Reviews, 22, 46-72. doi:10.1016/j.rser.2013.01.017

Liu, F., Gao, Y., Wu, H., Zhang, Z., He, X., & Li, X. (2018). Investigation on Soot Characteristics of Gasoline/Diesel Blends in a Laminar Coflow Diffusion Flame. Energy & Fuels, 32(7), 7841-7850. doi:10.1021/acs.energyfuels.7b04051

Medeiros, D. L., Sales, E. A., & Kiperstok, A. (2015). Energy production from microalgae biomass: carbon footprint and energy balance. Journal of Cleaner Production, 96, 493-500. doi:10.1016/j.jclepro.2014.07.038

Miller Jothi, N. K., Nagarajan, G., & Renganarayanan, S. (2007). Experimental studies on homogeneous charge CI engine fueled with LPG using DEE as an ignition enhancer. Renewable Energy, 32(9), 1581-1593. doi:10.1016/j.renene.2006.08.007

Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107

Pastor, J., Garcia-Oliver, J. M., Garcia, A., & Nareddy, V. R. (2017). Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions. SAE Technical Paper Series. doi:10.4271/2017-01-0843

PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017

Pastor, J. V., Garcia-Oliver, J. M., Novella, R., & Xuan, T. (2015). Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging. SAE International Journal of Engines, 8(5), 2068-2077. doi:10.4271/2015-24-2417

Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238

Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Durrett, R. (2013). A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy, 104, 568-575. doi:10.1016/j.apenergy.2012.11.030

Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Möller, S. (2016). Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 164, 212-223. doi:10.1016/j.combustflame.2015.11.018

Pastor, J. V., García-Oliver, J. M., García, A., & Pinotti, M. (2017). Effect of laser induced plasma ignition timing and location on Diesel spray combustion. Energy Conversion and Management, 133, 41-55. doi:10.1016/j.enconman.2016.11.054

Pastor, J. V., García-Oliver, J. M., García, A., & Pinotti, M. (2016). Laser induced plasma methodology for ignition control in direct injection sprays. Energy Conversion and Management, 120, 144-156. doi:10.1016/j.enconman.2016.04.086

Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370

Pastor, J. V., García, A., Micó, C., & García-Carrero, A. A. (2020). Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel, 260, 116377. doi:10.1016/j.fuel.2019.116377

Phuoc, T. X. (2006). Laser-induced spark ignition fundamental and applications. Optics and Lasers in Engineering, 44(5), 351-397. doi:10.1016/j.optlaseng.2005.03.008

Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006

Rajak, U., Nashine, P., & Verma, T. N. (2020). Effect of spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine. Fuel, 268, 117305. doi:10.1016/j.fuel.2020.117305

Sequino, L., Mancaruso, E., Monsalve-Serrano, J., & Garcia, A. (2020). Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine. SAE Technical Paper Series. doi:10.4271/2020-01-0557

Vu, D. N., Das, S. K., Jwa, K., & Lim, O. (2018). Characteristics of auto-ignition in gasoline–biodiesel blended fuel under engine-like conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(5), 1352-1364. doi:10.1177/0954407018763194

Wang, C., Wood, J., Wang, Y., Geng, X., & Long, X. (2020). CO2 emission in transportation sector across 51 countries along the Belt and Road from 2000 to 2014. Journal of Cleaner Production, 266, 122000. doi:10.1016/j.jclepro.2020.122000

Wang, J., Yang, F., & Ouyang, M. (2015). Dieseline fueled flexible fuel compression ignition engine control based on in-cylinder pressure sensor. Applied Energy, 159, 87-96. doi:10.1016/j.apenergy.2015.08.101

Weinrotter, M., Wintner, E., Iskra, K., Neger, T., Olofsson, J., Seyfried, H., … Johansson, B. (2005). Optical Diagnostics of Laser-Induced and Spark Plug-Assisted HCCI Combustion. SAE Technical Paper Series. doi:10.4271/2005-01-0129

Westlye, F. R., Penney, K., Ivarsson, A., Pickett, L. M., Manin, J., & Skeen, S. A. (2017). Diffuse back-illumination setup for high temporally resolved extinction imaging. Applied Optics, 56(17), 5028. doi:10.1364/ao.56.005028

Xuan, T., Desantes, J. M., Pastor, J. V., & Garcia-Oliver, J. M. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 204, 290-303. doi:10.1016/j.combustflame.2019.03.023

Xuan, T., Pastor, J. V., García-Oliver, J. M., García, A., He, Z., Wang, Q., & Reyes, M. (2019). In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 149, 1-10. doi:10.1016/j.applthermaleng.2018.11.112

Yan, X., Corbin, K. R., Burton, R. A., & Tan, D. K. Y. (2020). Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus. Journal of Cleaner Production, 261, 121283. doi:10.1016/j.jclepro.2020.121283

Yilmaz, N., Vigil, F. M., Burl Donaldson, A., & Darabseh, T. (2014). Investigation of CI engine emissions in biodiesel–ethanol–diesel blends as a function of ethanol concentration. Fuel, 115, 790-793. doi:10.1016/j.fuel.2013.08.012

Zheng, L., Ma, X., Wang, Z., & Wang, J. (2015). An optical study on liquid-phase penetration, flame lift-off location and soot volume fraction distribution of gasoline–diesel blends in a constant volume vessel. Fuel, 139, 365-373. doi:10.1016/j.fuel.2014.09.009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem