- -

Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pastor, José V. es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Mico Reche, Carlos es_ES
dc.date.accessioned 2021-07-21T03:31:01Z
dc.date.available 2021-07-21T03:31:01Z
dc.date.issued 2020-10-20 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169636
dc.description.abstract [EN] The use of alternative fuels in compression ignition engines, either completely or partially replacing the conventional ones, have potential to reduce pollutant emissions (especially soot). However, some of these fuels do not provide good ignition features under diesel engine like conditions, which affects engine efficiency. Thus, in order to extend the application of alternative fuels, the current research proposes the use of a laser induced plasma ignition system to assist on the combustion of blends of fuels with less reactivity than pure diesel. This fuel has been chosen as the base component and it has been mixed with gasoline (as the low-reactivity fuel) in different ratios as an example of fuels with very different reactivity properties. Tests have been performed in a single cylinder optically accessible engine, allowing deeper study of combustion development and soot formation. For different in-cylinder conditions and fuel blends, the effect of laser induced plasma ignition system has been evaluated at different crank angle degrees and locations inside the combustion chamber. The application of these blends under low-reactivity engine conditions show that combustion efficiency is dramatically affected. However, the study proves that it is possible to control blend ignition delay and flame lift-off length by means of laser induced plasma. Besides, using the proper ignition system configuration, combustion characteristics similar to those of diesel fuel autoignition can be achieved for high gasoline substitution rates. They lead to similar energy release rates, which confirms that diesel-gasoline blends can reach a combustion efficiency close to pure diesel, while a strong reduction on soot formation was also obtained. These results open a door to efficiency improvement and pollutant reduction by means of a highly tunable ignition of alternative fuel blends. es_ES
dc.description.sponsorship The authors acknowledge that this research work has been partly funded by the Government of Spain and FEDER under TRANCO project (TRA2017-87694-R). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Dieseline es_ES
dc.subject Compression ignition engine es_ES
dc.subject Laser plasma ignition es_ES
dc.subject Alternative fuel es_ES
dc.subject Soot reduction es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2020.122499 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Pastor, JV.; García-Oliver, JM.; García Martínez, A.; Mico Reche, C. (2020). Combustion improvement and pollutants reduction with diesel-gasoline blends by means of a highly tunable laser plasma induced ignition system. Journal of Cleaner Production. 271:1-13. https://doi.org/10.1016/j.jclepro.2020.122499 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2020.122499 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 271 es_ES
dc.relation.pasarela S\420988 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Ahmed, W., & Sarkar, B. (2018). Impact of carbon emissions in a sustainable supply chain management for a second generation biofuel. Journal of Cleaner Production, 186, 807-820. doi:10.1016/j.jclepro.2018.02.289 es_ES
dc.description.references Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389-3413. doi:10.1016/j.proci.2016.09.009 es_ES
dc.description.references Bakker, P. C., Maes, N., & Dam, N. (2017). The potential of on- and off-resonant formaldehyde imaging combined with bootstrapping in diesel sprays. Combustion and Flame, 182, 20-27. doi:10.1016/j.combustflame.2017.03.032 es_ES
dc.description.references Barrientos, E. J., Lapuerta, M., & Boehman, A. L. (2013). Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combustion and Flame, 160(8), 1484-1498. doi:10.1016/j.combustflame.2013.02.024 es_ES
dc.description.references Benajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 es_ES
dc.description.references Bermúdez, V., García, J. M., Juliá, E., & Martínez, S. (2003). Engine with Optically Accessible Cylinder Head: A Research Tool for Injection and Combustion Processes. SAE Technical Paper Series. doi:10.4271/2003-01-1110 es_ES
dc.description.references Dale, J. D., Smy, P. R., & Clements, R. M. (1978). Laser Ignited Internal Combustion Engine - An Experimental Study. SAE Technical Paper Series. doi:10.4271/780329 es_ES
dc.description.references Gómez, A., García-Contreras, R., Soriano, J. A., & Mata, C. (2020). Comparative study of the opacity tendency of alternative diesel fuels blended with gasoline. Fuel, 264, 116860. doi:10.1016/j.fuel.2019.116860 es_ES
dc.description.references Han, D., Wang, C., Duan, Y., Tian, Z., & Huang, Z. (2014). An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system. Energy, 75, 513-519. doi:10.1016/j.energy.2014.08.006 es_ES
dc.description.references Higgins, B., & Siebers, D. L. (2001). Measurement of the Flame Lift-Off Location on DI Diesel Sprays Using OH Chemiluminescence. SAE Technical Paper Series. doi:10.4271/2001-01-0918 es_ES
dc.description.references Hossain, A. K., & Davies, P. A. (2010). Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renewable Energy, 35(1), 1-13. doi:10.1016/j.renene.2009.05.009 es_ES
dc.description.references Hu, Y., Wang, Z., & Li, X. (2020). Impact of policies on electric vehicle diffusion: An evolutionary game of small world network analysis. Journal of Cleaner Production, 265, 121703. doi:10.1016/j.jclepro.2020.121703 es_ES
dc.description.references Hwang, J., Kim, W., Bae, C., Choe, W., Cha, J., & Woo, S. (2017). Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine. Applied Energy, 205, 562-576. doi:10.1016/j.apenergy.2017.07.129 es_ES
dc.description.references Kim, H., & Choi, B. (2008). Effect of ethanol–diesel blend fuels on emission and particle size distribution in a common-rail direct injection diesel engine with warm-up catalytic converter. Renewable Energy, 33(10), 2222-2228. doi:10.1016/j.renene.2008.01.002 es_ES
dc.description.references König, A., Ulonska, K., Mitsos, A., & Viell, J. (2019). Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity. Energy & Fuels, 33(2), 1659-1672. doi:10.1021/acs.energyfuels.8b03790 es_ES
dc.description.references Kumar, S., Cho, J. H., Park, J., & Moon, I. (2013). Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renewable and Sustainable Energy Reviews, 22, 46-72. doi:10.1016/j.rser.2013.01.017 es_ES
dc.description.references Liu, F., Gao, Y., Wu, H., Zhang, Z., He, X., & Li, X. (2018). Investigation on Soot Characteristics of Gasoline/Diesel Blends in a Laminar Coflow Diffusion Flame. Energy & Fuels, 32(7), 7841-7850. doi:10.1021/acs.energyfuels.7b04051 es_ES
dc.description.references Medeiros, D. L., Sales, E. A., & Kiperstok, A. (2015). Energy production from microalgae biomass: carbon footprint and energy balance. Journal of Cleaner Production, 96, 493-500. doi:10.1016/j.jclepro.2014.07.038 es_ES
dc.description.references Miller Jothi, N. K., Nagarajan, G., & Renganarayanan, S. (2007). Experimental studies on homogeneous charge CI engine fueled with LPG using DEE as an ignition enhancer. Renewable Energy, 32(9), 1581-1593. doi:10.1016/j.renene.2006.08.007 es_ES
dc.description.references Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107 es_ES
dc.description.references Pastor, J., Garcia-Oliver, J. M., Garcia, A., & Nareddy, V. R. (2017). Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions. SAE Technical Paper Series. doi:10.4271/2017-01-0843 es_ES
dc.description.references PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017 es_ES
dc.description.references Pastor, J. V., Garcia-Oliver, J. M., Novella, R., & Xuan, T. (2015). Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging. SAE International Journal of Engines, 8(5), 2068-2077. doi:10.4271/2015-24-2417 es_ES
dc.description.references Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Durrett, R. (2013). A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy, 104, 568-575. doi:10.1016/j.apenergy.2012.11.030 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Möller, S. (2016). Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 164, 212-223. doi:10.1016/j.combustflame.2015.11.018 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., & Pinotti, M. (2017). Effect of laser induced plasma ignition timing and location on Diesel spray combustion. Energy Conversion and Management, 133, 41-55. doi:10.1016/j.enconman.2016.11.054 es_ES
dc.description.references Pastor, J. V., García-Oliver, J. M., García, A., & Pinotti, M. (2016). Laser induced plasma methodology for ignition control in direct injection sprays. Energy Conversion and Management, 120, 144-156. doi:10.1016/j.enconman.2016.04.086 es_ES
dc.description.references Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370 es_ES
dc.description.references Pastor, J. V., García, A., Micó, C., & García-Carrero, A. A. (2020). Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel, 260, 116377. doi:10.1016/j.fuel.2019.116377 es_ES
dc.description.references Phuoc, T. X. (2006). Laser-induced spark ignition fundamental and applications. Optics and Lasers in Engineering, 44(5), 351-397. doi:10.1016/j.optlaseng.2005.03.008 es_ES
dc.description.references Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006 es_ES
dc.description.references Rajak, U., Nashine, P., & Verma, T. N. (2020). Effect of spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine. Fuel, 268, 117305. doi:10.1016/j.fuel.2020.117305 es_ES
dc.description.references Sequino, L., Mancaruso, E., Monsalve-Serrano, J., & Garcia, A. (2020). Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine. SAE Technical Paper Series. doi:10.4271/2020-01-0557 es_ES
dc.description.references Vu, D. N., Das, S. K., Jwa, K., & Lim, O. (2018). Characteristics of auto-ignition in gasoline–biodiesel blended fuel under engine-like conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(5), 1352-1364. doi:10.1177/0954407018763194 es_ES
dc.description.references Wang, C., Wood, J., Wang, Y., Geng, X., & Long, X. (2020). CO2 emission in transportation sector across 51 countries along the Belt and Road from 2000 to 2014. Journal of Cleaner Production, 266, 122000. doi:10.1016/j.jclepro.2020.122000 es_ES
dc.description.references Wang, J., Yang, F., & Ouyang, M. (2015). Dieseline fueled flexible fuel compression ignition engine control based on in-cylinder pressure sensor. Applied Energy, 159, 87-96. doi:10.1016/j.apenergy.2015.08.101 es_ES
dc.description.references Weinrotter, M., Wintner, E., Iskra, K., Neger, T., Olofsson, J., Seyfried, H., … Johansson, B. (2005). Optical Diagnostics of Laser-Induced and Spark Plug-Assisted HCCI Combustion. SAE Technical Paper Series. doi:10.4271/2005-01-0129 es_ES
dc.description.references Westlye, F. R., Penney, K., Ivarsson, A., Pickett, L. M., Manin, J., & Skeen, S. A. (2017). Diffuse back-illumination setup for high temporally resolved extinction imaging. Applied Optics, 56(17), 5028. doi:10.1364/ao.56.005028 es_ES
dc.description.references Xuan, T., Desantes, J. M., Pastor, J. V., & Garcia-Oliver, J. M. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 204, 290-303. doi:10.1016/j.combustflame.2019.03.023 es_ES
dc.description.references Xuan, T., Pastor, J. V., García-Oliver, J. M., García, A., He, Z., Wang, Q., & Reyes, M. (2019). In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 149, 1-10. doi:10.1016/j.applthermaleng.2018.11.112 es_ES
dc.description.references Yan, X., Corbin, K. R., Burton, R. A., & Tan, D. K. Y. (2020). Agave: A promising feedstock for biofuels in the water-energy-food-environment (WEFE) nexus. Journal of Cleaner Production, 261, 121283. doi:10.1016/j.jclepro.2020.121283 es_ES
dc.description.references Yilmaz, N., Vigil, F. M., Burl Donaldson, A., & Darabseh, T. (2014). Investigation of CI engine emissions in biodiesel–ethanol–diesel blends as a function of ethanol concentration. Fuel, 115, 790-793. doi:10.1016/j.fuel.2013.08.012 es_ES
dc.description.references Zheng, L., Ma, X., Wang, Z., & Wang, J. (2015). An optical study on liquid-phase penetration, flame lift-off location and soot volume fraction distribution of gasoline–diesel blends in a constant volume vessel. Fuel, 139, 365-373. doi:10.1016/j.fuel.2014.09.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem