- -

Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash

Mostrar el registro completo del ítem

Font-Pérez, A.; Soriano Martinez, L.; Pinheiro, SMDM.; Tashima, MM.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production. 243:1-11. https://doi.org/10.1016/j.jclepro.2019.118568

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169639

Ficheros en el ítem

Metadatos del ítem

Título: Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash
Autor: Font-Pérez, Alba Soriano Martinez, Lourdes Pinheiro, Sayonara Maria de Moraes Tashima, Mauro M. Monzó Balbuena, José Mª Borrachero Rosado, María Victoria Paya Bernabeu, Jorge Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Fecha difusión:
Resumen:
[EN] Alkali-activated cements (AACs) technology is being widely investigated as a replacement for ordinary Portland cement (OPC) for environmental benefits. Blast furnace slag (BFS) is one of the most well known precursors ...[+]
Palabras clave: Alkali-activated cement , Blast furnace slag , Olive-stone biomass ash , Rice husk ash , Ternary binder
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Cleaner Production. (issn: 0959-6526 )
DOI: 10.1016/j.jclepro.2019.118568
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jclepro.2019.118568
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/
Tipo: Artículo

References

Adesanya, E., Ohenoja, K., Luukkonen, T., Kinnunen, P., & Illikainen, M. (2018). One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 185, 168-175. doi:10.1016/j.jclepro.2018.03.007

Andrew, R. M. (2018). Global CO<sub>2</sub> emissions from cement production, 1928–2017. Earth System Science Data, 10(4), 2213-2239. doi:10.5194/essd-10-2213-2018

Beltrán, M. G., Barbudo, A., Agrela, F., Jiménez, J. R., & de Brito, J. (2016). Mechanical performance of bedding mortars made with olive biomass bottom ash. Construction and Building Materials, 112, 699-707. doi:10.1016/j.conbuildmat.2016.02.065 [+]
Adesanya, E., Ohenoja, K., Luukkonen, T., Kinnunen, P., & Illikainen, M. (2018). One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 185, 168-175. doi:10.1016/j.jclepro.2018.03.007

Andrew, R. M. (2018). Global CO<sub>2</sub> emissions from cement production, 1928–2017. Earth System Science Data, 10(4), 2213-2239. doi:10.5194/essd-10-2213-2018

Beltrán, M. G., Barbudo, A., Agrela, F., Jiménez, J. R., & de Brito, J. (2016). Mechanical performance of bedding mortars made with olive biomass bottom ash. Construction and Building Materials, 112, 699-707. doi:10.1016/j.conbuildmat.2016.02.065

Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2015). Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales de Construcción, 65(318), e049. doi:10.3989/mc.2015.03114

Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001

Cheah, C. B., Part, W. K., & Ramli, M. (2015). The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Construction and Building Materials, 88, 41-55. doi:10.1016/j.conbuildmat.2015.04.020

De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157

Fernández-Jiménez, A., Cristelo, N., Miranda, T., & Palomo, Á. (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. Journal of Cleaner Production, 162, 1200-1209. doi:10.1016/j.jclepro.2017.06.151

Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4

Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129

Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 223, 10-13. doi:10.1016/j.matlet.2018.04.010

Hu, W., Nie, Q., Huang, B., Shu, X., & He, Q. (2018). Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production, 186, 799-806. doi:10.1016/j.jclepro.2018.03.086

Lee, N. K., & Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201-1209. doi:10.1016/j.conbuildmat.2013.05.107

Liao, L., Zhao, N., & Xia, Z. (2012). Hydrothermal synthesis of Mg–Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Materials Research Bulletin, 47(11), 3897-3901. doi:10.1016/j.materresbull.2012.07.007

Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. Journal of Cleaner Production, 187, 171-179. doi:10.1016/j.jclepro.2018.03.202

Mejía, J. M., Mejía de Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133-139. doi:10.1016/j.jclepro.2016.01.057

Mejía de Gutiérrez, R., Mejía, J. M., & Puertas, F. (2013). Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materiales de Construcción, 63(311), 361-375. doi:10.3989/mc.2013.04712

Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b

Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230

Moraes, J. C. B., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Monzó, J., Borrachero, M. V., … Payá, J. (2017). Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Construction and Building Materials, 144, 214-224. doi:10.1016/j.conbuildmat.2017.03.166

Nie, Q., Hu, W., Huang, B., Shu, X., & He, Q. (2019). Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. Journal of Hazardous Materials, 369, 503-511. doi:10.1016/j.jhazmat.2019.02.059

Passuello, A., Rodríguez, E. D., Hirt, E., Longhi, M., Bernal, S. A., Provis, J. L., & Kirchheim, A. P. (2017). Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 166, 680-689. doi:10.1016/j.jclepro.2017.08.007

Pereira, A., Akasaki, J. L., Melges, J. L. P., Tashima, M. M., Soriano, L., Borrachero, M. V., … Payá, J. (2015). Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, 41(10), 13012-13024. doi:10.1016/j.ceramint.2015.07.001

Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003

Rivera, O. G., Long, W. R., Weiss Jr., C. A., Moser, R. D., Williams, B. A., Torres-Cancel, K., … Allison, P. G. (2016). Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cement and Concrete Research, 90, 43-51. doi:10.1016/j.cemconres.2016.09.013

Shirley, R., & Black, L. (2011). Alkali activated solidification/stabilisation of air pollution control residues and co-fired pulverised fuel ash. Journal of Hazardous Materials, 194, 232-242. doi:10.1016/j.jhazmat.2011.07.100

Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E., & Leonelli, C. (2016). Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials, 114, 276-289. doi:10.1016/j.conbuildmat.2016.03.184

Tippayasam, C., Balyore, P., Thavorniti, P., Kamseu, E., Leonelli, C., Chindaprasirt, P., & Chaysuwan, D. (2016). Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Construction and Building Materials, 104, 293-297. doi:10.1016/j.conbuildmat.2015.11.027

Torres-Carrasco, M., & Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. Journal of Cleaner Production, 90, 397-408. doi:10.1016/j.jclepro.2014.11.074

Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023

Van Riessen, A., Jamieson, E., Kealley, C. S., Hart, R. D., & Williams, R. P. (2013). Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries. Cement and Concrete Composites, 41, 29-33. doi:10.1016/j.cemconcomp.2013.04.010

Wang, S.-D., Pu, X.-C., Scrivener, K. L., & Pratt, P. L. (1995). Alkali-activated slag cement and concrete: a review of properties and problems. Advances in Cement Research, 7(27), 93-102. doi:10.1680/adcr.1995.7.27.93

Yang, K.-H., Song, J.-K., & Song, K.-I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem