Mostrar el registro sencillo del ítem
dc.contributor.author | Font-Pérez, Alba | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.contributor.author | Pinheiro, Sayonara Maria de Moraes | es_ES |
dc.contributor.author | Tashima, Mauro M. | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.date.accessioned | 2021-07-21T03:31:09Z | |
dc.date.available | 2021-07-21T03:31:09Z | |
dc.date.issued | 2020-01-10 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169639 | |
dc.description.abstract | [EN] Alkali-activated cements (AACs) technology is being widely investigated as a replacement for ordinary Portland cement (OPC) for environmental benefits. Blast furnace slag (BFS) is one of the most well known precursors used in AACs, having comparable properties to those of traditional OPC-based materials. AACs require alkali solutions, which are commonly based on a combination of sodium or potassium hydroxides with sodium or potassium silicates in high concentration. These alkali solutions represent the use of chemical reagents, and thus can have major environmental, health and economic impacts. Olive-stone (also known as olive pits) biomass ash (OBA) is a residue mainly composed of calcium and potassium oxides. Rice husk ash (RHA) is a rich silica residue from the combustion of rice husk. The combination of both residues can produce a good activating reagent for BFS-based AACs. In the present work, 100% waste-based ternary alkali-activated mortars (TAAM) based on BFS activated by OBA and RHA were developed. The mortars were assessed in terms of their dosage, curing treatment and time evolution. Finally an eco-friendly 100% waste-based TAAM with 67.39 +/- 0.44 MPa after 90 days of curing at 20 degrees C is obtained and a complete microstructural characterization shows a dense and compact matrix with binding gel products labelled as C(K)-S(A)-H and C(K)-S-H. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Alkali-activated cement | es_ES |
dc.subject | Blast furnace slag | es_ES |
dc.subject | Olive-stone biomass ash | es_ES |
dc.subject | Rice husk ash | es_ES |
dc.subject | Ternary binder | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2019.118568 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Font-Pérez, A.; Soriano Martinez, L.; Pinheiro, SMDM.; Tashima, MM.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production. 243:1-11. https://doi.org/10.1016/j.jclepro.2019.118568 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2019.118568 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 243 | es_ES |
dc.relation.pasarela | S\430862 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Adesanya, E., Ohenoja, K., Luukkonen, T., Kinnunen, P., & Illikainen, M. (2018). One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 185, 168-175. doi:10.1016/j.jclepro.2018.03.007 | es_ES |
dc.description.references | Andrew, R. M. (2018). Global CO<sub>2</sub> emissions from cement production, 1928–2017. Earth System Science Data, 10(4), 2213-2239. doi:10.5194/essd-10-2213-2018 | es_ES |
dc.description.references | Beltrán, M. G., Barbudo, A., Agrela, F., Jiménez, J. R., & de Brito, J. (2016). Mechanical performance of bedding mortars made with olive biomass bottom ash. Construction and Building Materials, 112, 699-707. doi:10.1016/j.conbuildmat.2016.02.065 | es_ES |
dc.description.references | Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2015). Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales de Construcción, 65(318), e049. doi:10.3989/mc.2015.03114 | es_ES |
dc.description.references | Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 | es_ES |
dc.description.references | Cheah, C. B., Part, W. K., & Ramli, M. (2015). The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Construction and Building Materials, 88, 41-55. doi:10.1016/j.conbuildmat.2015.04.020 | es_ES |
dc.description.references | De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 | es_ES |
dc.description.references | Fernández-Jiménez, A., Cristelo, N., Miranda, T., & Palomo, Á. (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. Journal of Cleaner Production, 162, 1200-1209. doi:10.1016/j.jclepro.2017.06.151 | es_ES |
dc.description.references | Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4 | es_ES |
dc.description.references | Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129 | es_ES |
dc.description.references | Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 223, 10-13. doi:10.1016/j.matlet.2018.04.010 | es_ES |
dc.description.references | Hu, W., Nie, Q., Huang, B., Shu, X., & He, Q. (2018). Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production, 186, 799-806. doi:10.1016/j.jclepro.2018.03.086 | es_ES |
dc.description.references | Lee, N. K., & Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201-1209. doi:10.1016/j.conbuildmat.2013.05.107 | es_ES |
dc.description.references | Liao, L., Zhao, N., & Xia, Z. (2012). Hydrothermal synthesis of Mg–Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Materials Research Bulletin, 47(11), 3897-3901. doi:10.1016/j.materresbull.2012.07.007 | es_ES |
dc.description.references | Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. Journal of Cleaner Production, 187, 171-179. doi:10.1016/j.jclepro.2018.03.202 | es_ES |
dc.description.references | Mejía, J. M., Mejía de Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133-139. doi:10.1016/j.jclepro.2016.01.057 | es_ES |
dc.description.references | Mejía de Gutiérrez, R., Mejía, J. M., & Puertas, F. (2013). Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materiales de Construcción, 63(311), 361-375. doi:10.3989/mc.2013.04712 | es_ES |
dc.description.references | Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b | es_ES |
dc.description.references | Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230 | es_ES |
dc.description.references | Moraes, J. C. B., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Monzó, J., Borrachero, M. V., … Payá, J. (2017). Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Construction and Building Materials, 144, 214-224. doi:10.1016/j.conbuildmat.2017.03.166 | es_ES |
dc.description.references | Nie, Q., Hu, W., Huang, B., Shu, X., & He, Q. (2019). Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. Journal of Hazardous Materials, 369, 503-511. doi:10.1016/j.jhazmat.2019.02.059 | es_ES |
dc.description.references | Passuello, A., Rodríguez, E. D., Hirt, E., Longhi, M., Bernal, S. A., Provis, J. L., & Kirchheim, A. P. (2017). Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 166, 680-689. doi:10.1016/j.jclepro.2017.08.007 | es_ES |
dc.description.references | Pereira, A., Akasaki, J. L., Melges, J. L. P., Tashima, M. M., Soriano, L., Borrachero, M. V., … Payá, J. (2015). Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, 41(10), 13012-13024. doi:10.1016/j.ceramint.2015.07.001 | es_ES |
dc.description.references | Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003 | es_ES |
dc.description.references | Rivera, O. G., Long, W. R., Weiss Jr., C. A., Moser, R. D., Williams, B. A., Torres-Cancel, K., … Allison, P. G. (2016). Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cement and Concrete Research, 90, 43-51. doi:10.1016/j.cemconres.2016.09.013 | es_ES |
dc.description.references | Shirley, R., & Black, L. (2011). Alkali activated solidification/stabilisation of air pollution control residues and co-fired pulverised fuel ash. Journal of Hazardous Materials, 194, 232-242. doi:10.1016/j.jhazmat.2011.07.100 | es_ES |
dc.description.references | Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E., & Leonelli, C. (2016). Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials, 114, 276-289. doi:10.1016/j.conbuildmat.2016.03.184 | es_ES |
dc.description.references | Tippayasam, C., Balyore, P., Thavorniti, P., Kamseu, E., Leonelli, C., Chindaprasirt, P., & Chaysuwan, D. (2016). Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Construction and Building Materials, 104, 293-297. doi:10.1016/j.conbuildmat.2015.11.027 | es_ES |
dc.description.references | Torres-Carrasco, M., & Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. Journal of Cleaner Production, 90, 397-408. doi:10.1016/j.jclepro.2014.11.074 | es_ES |
dc.description.references | Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023 | es_ES |
dc.description.references | Van Riessen, A., Jamieson, E., Kealley, C. S., Hart, R. D., & Williams, R. P. (2013). Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries. Cement and Concrete Composites, 41, 29-33. doi:10.1016/j.cemconcomp.2013.04.010 | es_ES |
dc.description.references | Wang, S.-D., Pu, X.-C., Scrivener, K. L., & Pratt, P. L. (1995). Alkali-activated slag cement and concrete: a review of properties and problems. Advances in Cement Research, 7(27), 93-102. doi:10.1680/adcr.1995.7.27.93 | es_ES |
dc.description.references | Yang, K.-H., Song, J.-K., & Song, K.-I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |