- -

Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Font-Pérez, Alba es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.contributor.author Pinheiro, Sayonara Maria de Moraes es_ES
dc.contributor.author Tashima, Mauro M. es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2021-07-21T03:31:09Z
dc.date.available 2021-07-21T03:31:09Z
dc.date.issued 2020-01-10 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169639
dc.description.abstract [EN] Alkali-activated cements (AACs) technology is being widely investigated as a replacement for ordinary Portland cement (OPC) for environmental benefits. Blast furnace slag (BFS) is one of the most well known precursors used in AACs, having comparable properties to those of traditional OPC-based materials. AACs require alkali solutions, which are commonly based on a combination of sodium or potassium hydroxides with sodium or potassium silicates in high concentration. These alkali solutions represent the use of chemical reagents, and thus can have major environmental, health and economic impacts. Olive-stone (also known as olive pits) biomass ash (OBA) is a residue mainly composed of calcium and potassium oxides. Rice husk ash (RHA) is a rich silica residue from the combustion of rice husk. The combination of both residues can produce a good activating reagent for BFS-based AACs. In the present work, 100% waste-based ternary alkali-activated mortars (TAAM) based on BFS activated by OBA and RHA were developed. The mortars were assessed in terms of their dosage, curing treatment and time evolution. Finally an eco-friendly 100% waste-based TAAM with 67.39 +/- 0.44 MPa after 90 days of curing at 20 degrees C is obtained and a complete microstructural characterization shows a dense and compact matrix with binding gel products labelled as C(K)-S(A)-H and C(K)-S-H. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Alkali-activated cement es_ES
dc.subject Blast furnace slag es_ES
dc.subject Olive-stone biomass ash es_ES
dc.subject Rice husk ash es_ES
dc.subject Ternary binder es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2019.118568 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Font-Pérez, A.; Soriano Martinez, L.; Pinheiro, SMDM.; Tashima, MM.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: blastfurnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production. 243:1-11. https://doi.org/10.1016/j.jclepro.2019.118568 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2019.118568 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 243 es_ES
dc.relation.pasarela S\430862 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Adesanya, E., Ohenoja, K., Luukkonen, T., Kinnunen, P., & Illikainen, M. (2018). One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 185, 168-175. doi:10.1016/j.jclepro.2018.03.007 es_ES
dc.description.references Andrew, R. M. (2018). Global CO<sub>2</sub> emissions from cement production, 1928–2017. Earth System Science Data, 10(4), 2213-2239. doi:10.5194/essd-10-2213-2018 es_ES
dc.description.references Beltrán, M. G., Barbudo, A., Agrela, F., Jiménez, J. R., & de Brito, J. (2016). Mechanical performance of bedding mortars made with olive biomass bottom ash. Construction and Building Materials, 112, 699-707. doi:10.1016/j.conbuildmat.2016.02.065 es_ES
dc.description.references Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2015). Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales de Construcción, 65(318), e049. doi:10.3989/mc.2015.03114 es_ES
dc.description.references Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 es_ES
dc.description.references Cheah, C. B., Part, W. K., & Ramli, M. (2015). The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Construction and Building Materials, 88, 41-55. doi:10.1016/j.conbuildmat.2015.04.020 es_ES
dc.description.references De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 es_ES
dc.description.references Fernández-Jiménez, A., Cristelo, N., Miranda, T., & Palomo, Á. (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. Journal of Cleaner Production, 162, 1200-1209. doi:10.1016/j.jclepro.2017.06.151 es_ES
dc.description.references Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4 es_ES
dc.description.references Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129 es_ES
dc.description.references Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 223, 10-13. doi:10.1016/j.matlet.2018.04.010 es_ES
dc.description.references Hu, W., Nie, Q., Huang, B., Shu, X., & He, Q. (2018). Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production, 186, 799-806. doi:10.1016/j.jclepro.2018.03.086 es_ES
dc.description.references Lee, N. K., & Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201-1209. doi:10.1016/j.conbuildmat.2013.05.107 es_ES
dc.description.references Liao, L., Zhao, N., & Xia, Z. (2012). Hydrothermal synthesis of Mg–Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Materials Research Bulletin, 47(11), 3897-3901. doi:10.1016/j.materresbull.2012.07.007 es_ES
dc.description.references Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. Journal of Cleaner Production, 187, 171-179. doi:10.1016/j.jclepro.2018.03.202 es_ES
dc.description.references Mejía, J. M., Mejía de Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133-139. doi:10.1016/j.jclepro.2016.01.057 es_ES
dc.description.references Mejía de Gutiérrez, R., Mejía, J. M., & Puertas, F. (2013). Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materiales de Construcción, 63(311), 361-375. doi:10.3989/mc.2013.04712 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230 es_ES
dc.description.references Moraes, J. C. B., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Monzó, J., Borrachero, M. V., … Payá, J. (2017). Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Construction and Building Materials, 144, 214-224. doi:10.1016/j.conbuildmat.2017.03.166 es_ES
dc.description.references Nie, Q., Hu, W., Huang, B., Shu, X., & He, Q. (2019). Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. Journal of Hazardous Materials, 369, 503-511. doi:10.1016/j.jhazmat.2019.02.059 es_ES
dc.description.references Passuello, A., Rodríguez, E. D., Hirt, E., Longhi, M., Bernal, S. A., Provis, J. L., & Kirchheim, A. P. (2017). Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 166, 680-689. doi:10.1016/j.jclepro.2017.08.007 es_ES
dc.description.references Pereira, A., Akasaki, J. L., Melges, J. L. P., Tashima, M. M., Soriano, L., Borrachero, M. V., … Payá, J. (2015). Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, 41(10), 13012-13024. doi:10.1016/j.ceramint.2015.07.001 es_ES
dc.description.references Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003 es_ES
dc.description.references Rivera, O. G., Long, W. R., Weiss Jr., C. A., Moser, R. D., Williams, B. A., Torres-Cancel, K., … Allison, P. G. (2016). Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cement and Concrete Research, 90, 43-51. doi:10.1016/j.cemconres.2016.09.013 es_ES
dc.description.references Shirley, R., & Black, L. (2011). Alkali activated solidification/stabilisation of air pollution control residues and co-fired pulverised fuel ash. Journal of Hazardous Materials, 194, 232-242. doi:10.1016/j.jhazmat.2011.07.100 es_ES
dc.description.references Tchakouté, H. K., Rüscher, C. H., Kong, S., Kamseu, E., & Leonelli, C. (2016). Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials, 114, 276-289. doi:10.1016/j.conbuildmat.2016.03.184 es_ES
dc.description.references Tippayasam, C., Balyore, P., Thavorniti, P., Kamseu, E., Leonelli, C., Chindaprasirt, P., & Chaysuwan, D. (2016). Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Construction and Building Materials, 104, 293-297. doi:10.1016/j.conbuildmat.2015.11.027 es_ES
dc.description.references Torres-Carrasco, M., & Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. Journal of Cleaner Production, 90, 397-408. doi:10.1016/j.jclepro.2014.11.074 es_ES
dc.description.references Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125-130. doi:10.1016/j.conbuildmat.2013.01.023 es_ES
dc.description.references Van Riessen, A., Jamieson, E., Kealley, C. S., Hart, R. D., & Williams, R. P. (2013). Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries. Cement and Concrete Composites, 41, 29-33. doi:10.1016/j.cemconcomp.2013.04.010 es_ES
dc.description.references Wang, S.-D., Pu, X.-C., Scrivener, K. L., & Pratt, P. L. (1995). Alkali-activated slag cement and concrete: a review of properties and problems. Advances in Cement Research, 7(27), 93-102. doi:10.1680/adcr.1995.7.27.93 es_ES
dc.description.references Yang, K.-H., Song, J.-K., & Song, K.-I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265-272. doi:10.1016/j.jclepro.2012.08.001 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem