- -

A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zurriaga Carda, Javier es_ES
dc.contributor.author Lastra, Maria L. es_ES
dc.contributor.author Antolinos-Turpin, Carmen M. es_ES
dc.contributor.author Morales-Román, Rosa M. es_ES
dc.contributor.author Sancho-Tello, María es_ES
dc.contributor.author Perea-Ruiz, Sofía es_ES
dc.contributor.author Milián, Lara es_ES
dc.contributor.author Fernández, Juan M. es_ES
dc.contributor.author Cortizo, Ana M. es_ES
dc.contributor.author Carda, Carmen es_ES
dc.contributor.author Gallego-Ferrer, Gloria es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2021-07-21T03:31:13Z
dc.date.available 2021-07-21T03:31:13Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 1552-4973 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169640
dc.description.abstract [EN] The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3¿mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them with a poly(l-lactic acid) (PLLA) membrane manufactured by electrospinning. Experimental groups included a group where exclusively PLLA microspheres were implanted, another group where a mixture of 50/50 microspheres of PLLA (hydrophobic and rigid) and others of chitosan (a hydrogel) were used, and a third group used as a control where no material was used and only the membrane was covering the defect. The histological characteristics of the regenerated tissue have been evaluated 3 months after the operation. We found that during the regeneration process the microspheres, and the membrane covering them, are displaced by the neoformed tissue in the regeneration space toward the subchondral bone region, leaving room for the formation of a tissue with the characteristics of hyaline cartilage. es_ES
dc.description.sponsorship Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, Grant/Award Number: 11/X643; Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional de la Unión Europea, Grant/Award Number: MAT2016-76039-C4-1 2-R; Spanish Ministry of Economy and Competitiveness (MINECO) es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part B Applied Biomaterials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Articular cartilage regeneration es_ES
dc.subject Cartilage engineering es_ES
dc.subject Chitosan es_ES
dc.subject Microspheres es_ES
dc.subject Polylactide es_ES
dc.subject Rabbit knee model es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.b.34490 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNLP//11%2FX643/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Zurriaga Carda, J.; Lastra, ML.; Antolinos-Turpin, CM.; Morales-Román, RM.; Sancho-Tello, M.; Perea-Ruiz, S.; Milián, L.... (2020). A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model. Journal of Biomedical Materials Research Part B Applied Biomaterials. 108(4):1428-1438. https://doi.org/10.1002/jbm.b.34490 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/jbm.b.34490 es_ES
dc.description.upvformatpinicio 1428 es_ES
dc.description.upvformatpfin 1438 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 31520507 es_ES
dc.relation.pasarela S\405032 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad Nacional de La Plata, Argentina es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Allepuz, A., Martínez, O., Tebé, C., Nardi, J., Portabella, F., & Espallargues, M. (2014). Joint Registries as Continuous Surveillance Systems: The Experience of the Catalan Arthroplasty Register (RACat). The Journal of Arthroplasty, 29(3), 484-490. doi:10.1016/j.arth.2013.07.048 es_ES
dc.description.references Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., & Navarro, M. (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 10(2), 613-622. doi:10.1016/j.actbio.2013.10.035 es_ES
dc.description.references Bell, A. D., Hurtig, M. B., Quenneville, E., Rivard, G.-É., & Hoemann, C. D. (2016). Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. CARTILAGE, 8(4), 417-431. doi:10.1177/1947603516676872 es_ES
dc.description.references Bitencourt, C. da S., Silva, L. B. da, Pereira, P. A. T., Gelfuso, G. M., & Faccioli, L. H. (2015). Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages. Colloids and Surfaces B: Biointerfaces, 136, 678-686. doi:10.1016/j.colsurfb.2015.10.011 es_ES
dc.description.references Bonasia, D. E., Martin, J. A., Marmotti, A., Kurriger, G. L., Lehman, A. D., Rossi, R., & Amendola, A. (2015). The use of autologous adult, allogenic juvenile, and combined juvenile–adult cartilage fragments for the repair of chondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3988-3996. doi:10.1007/s00167-015-3536-5 es_ES
dc.description.references Carmona, L. (2001). The burden of musculoskeletal diseases in the general population of Spain: results from a national survey. Annals of the Rheumatic Diseases, 60(11), 1040-1045. doi:10.1136/ard.60.11.1040 es_ES
dc.description.references Chu, J., Zeng, S., Gao, L., Groth, T., Li, Z., Kong, J., … Li, L. (2016). Poly (L-Lactic Acid) Porous Scaffold-Supported Alginate Hydrogel with Improved Mechanical Properties and Biocompatibility. The International Journal of Artificial Organs, 39(8), 435-443. doi:10.5301/ijao.5000516 es_ES
dc.description.references Conoscenti, G., Schneider, T., Stoelzel, K., Carfì Pavia, F., Brucato, V., Goegele, C., … Schulze-Tanzil, G. (2017). PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Materials Science and Engineering: C, 80, 449-459. doi:10.1016/j.msec.2017.06.011 es_ES
dc.description.references Dashtdar, H., Murali, M. R., Abbas, A. A., Suhaeb, A. M., Selvaratnam, L., Tay, L. X., & Kamarul, T. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377. doi:10.1007/s00167-013-2723-5 es_ES
dc.description.references Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337 es_ES
dc.description.references Fernández, J. M., Cortizo, M. S., & Cortizo, A. M. (2014). Fumarate/Ceramic Composite Based Scaffolds for Tissue Engineering: Evaluation of Hydrophylicity, Degradability, Toxicity and Biocompatibility. Journal of Biomaterials and Tissue Engineering, 4(3), 227-234. doi:10.1166/jbt.2014.1158 es_ES
dc.description.references García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106 es_ES
dc.description.references Gordon, S. (2007). The macrophage: Past, present and future. European Journal of Immunology, 37(S1), S9-S17. doi:10.1002/eji.200737638 es_ES
dc.description.references Goyal, D., Keyhani, S., Lee, E. H., & Hui, J. H. P. (2013). Evidence-Based Status of Microfracture Technique: A Systematic Review of Level I and II Studies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(9), 1579-1588. doi:10.1016/j.arthro.2013.05.027 es_ES
dc.description.references Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04 es_ES
dc.description.references Hoemann, C., Kandel, R., Roberts, S., Saris, D. B. F., Creemers, L., Mainil-Varlet, P., … Buschmann, M. D. (2011). International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. CARTILAGE, 2(2), 153-172. doi:10.1177/1947603510397535 es_ES
dc.description.references Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104(12), 6017-6084. doi:10.1021/cr030441b es_ES
dc.description.references Kuo, T.-F., Lin, M.-F., Lin, Y.-H., Lin, Y.-C., Su, R.-J., Lin, H.-W., & Chan, W. P. (2011). Implantation of platelet-rich fibrin and cartilage granules facilitates cartilage repair in the injured rabbit knee: preliminary report. Clinics, 66(10), 1835-1838. doi:10.1590/s1807-59322011001000026 es_ES
dc.description.references Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. doi:10.2307/2529310 es_ES
dc.description.references Lao, L., Tan, H., Wang, Y., & Gao, C. (2008). Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 66(2), 218-225. doi:10.1016/j.colsurfb.2008.06.014 es_ES
dc.description.references Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260 es_ES
dc.description.references Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219 es_ES
dc.description.references Lebourg, M., Martínez-Díaz, S., García-Giralt, N., Torres-Claramunt, R., Ribelles, J. G., Vila-Canet, G., & Monllau, J. (2013). Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study in vivo. Journal of Biomaterials Applications, 28(9), 1304-1315. doi:10.1177/0885328213507298 es_ES
dc.description.references Luzardo-Alvarez, A., Blarer, N., Peter, K., Romero, J. F., Reymond, C., Corradin, G., & Gander, B. (2005). Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. Journal of Controlled Release, 109(1-3), 62-76. doi:10.1016/j.jconrel.2005.09.015 es_ES
dc.description.references Mainil-Varlet, P., Van Damme, B., Nesic, D., Knutsen, G., Kandel, R., & Roberts, S. (2010). A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II. The American Journal of Sports Medicine, 38(5), 880-890. doi:10.1177/0363546509359068 es_ES
dc.description.references Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 es_ES
dc.description.references McCormick, F., Harris, J. D., Abrams, G. D., Frank, R., Gupta, A., Hussey, K., … Cole, B. (2014). Trends in the Surgical Treatment of Articular Cartilage Lesions in the United States: An Analysis of a Large Private-Payer Database Over a Period of 8 Years. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(2), 222-226. doi:10.1016/j.arthro.2013.11.001 es_ES
dc.description.references Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution of in Vivo Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 es_ES
dc.description.references Sancho-Tello, M., Forriol, F., de Llano, J. J. M., Antolinos-Turpin, C., Gómez-Tejedor, J. A., Ribelles, J. L. G., & Carda, C. (2017). Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits. The International Journal of Artificial Organs, 40(7), 350-357. doi:10.5301/ijao.5000598 es_ES
dc.description.references Steadman, J. R., Rodkey, W. G., Briggs, K. K., & Rodrigo, J. J. (1999). The microfracture technique to treat full thickness articular cartilage defects of the knee. Der Orthopäde, 28(1), 26-32. doi:10.1007/pl00003545 es_ES
dc.description.references Tetè, S., Mastrangelo, F., Carone, L., Nargi, E., Costanzo, G., Vinci, R., … Ciccarelli, R. (2007). Morphostructural Analysis of Human Follicular Stem Cells on Highly Porous Bone Hydroxyapatite Scaffold. International Journal of Immunopathology and Pharmacology, 20(4), 819-826. doi:10.1177/039463200702000418 es_ES
dc.description.references Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005 es_ES
dc.description.references Vikingsson, L., Sancho-Tello, M., Ruiz-Saurí, A., Díaz, S. M., Gómez-Tejedor, J. A., Ferrer, G. G., … Ribelles, J. L. G. (2015). Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. The International Journal of Artificial Organs, 38(12), 659-666. doi:10.5301/ijao.5000457 es_ES
dc.description.references Zan, Q., Wang, C., Dong, L., Cheng, P., & Tian, J. (2008). Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 255(2), 401-403. doi:10.1016/j.apsusc.2008.06.074 es_ES
dc.description.references Zhang, C., Cai, Y., & Lin, X. (2016). One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32(7), 1444-1450. doi:10.1016/j.arthro.2016.01.061 es_ES
dc.description.references Zhu, W., Chen, K., Lu, W., Sun, Q., Peng, L., Fen, W., … Zeng, Y. (2013). In vitro study of nano-HA/PLLA composite scaffold for rabbit BMSC differentiation under TGF-β1 induction. In Vitro Cellular & Developmental Biology - Animal, 50(3), 214-220. doi:10.1007/s11626-013-9699-9 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem