Allepuz, A., Martínez, O., Tebé, C., Nardi, J., Portabella, F., & Espallargues, M. (2014). Joint Registries as Continuous Surveillance Systems: The Experience of the Catalan Arthroplasty Register (RACat). The Journal of Arthroplasty, 29(3), 484-490. doi:10.1016/j.arth.2013.07.048
Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., & Navarro, M. (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 10(2), 613-622. doi:10.1016/j.actbio.2013.10.035
Bell, A. D., Hurtig, M. B., Quenneville, E., Rivard, G.-É., & Hoemann, C. D. (2016). Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. CARTILAGE, 8(4), 417-431. doi:10.1177/1947603516676872
[+]
Allepuz, A., Martínez, O., Tebé, C., Nardi, J., Portabella, F., & Espallargues, M. (2014). Joint Registries as Continuous Surveillance Systems: The Experience of the Catalan Arthroplasty Register (RACat). The Journal of Arthroplasty, 29(3), 484-490. doi:10.1016/j.arth.2013.07.048
Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., & Navarro, M. (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 10(2), 613-622. doi:10.1016/j.actbio.2013.10.035
Bell, A. D., Hurtig, M. B., Quenneville, E., Rivard, G.-É., & Hoemann, C. D. (2016). Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. CARTILAGE, 8(4), 417-431. doi:10.1177/1947603516676872
Bitencourt, C. da S., Silva, L. B. da, Pereira, P. A. T., Gelfuso, G. M., & Faccioli, L. H. (2015). Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages. Colloids and Surfaces B: Biointerfaces, 136, 678-686. doi:10.1016/j.colsurfb.2015.10.011
Bonasia, D. E., Martin, J. A., Marmotti, A., Kurriger, G. L., Lehman, A. D., Rossi, R., & Amendola, A. (2015). The use of autologous adult, allogenic juvenile, and combined juvenile–adult cartilage fragments for the repair of chondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3988-3996. doi:10.1007/s00167-015-3536-5
Carmona, L. (2001). The burden of musculoskeletal diseases in the general population of Spain: results from a national survey. Annals of the Rheumatic Diseases, 60(11), 1040-1045. doi:10.1136/ard.60.11.1040
Chu, J., Zeng, S., Gao, L., Groth, T., Li, Z., Kong, J., … Li, L. (2016). Poly (L-Lactic Acid) Porous Scaffold-Supported Alginate Hydrogel with Improved Mechanical Properties and Biocompatibility. The International Journal of Artificial Organs, 39(8), 435-443. doi:10.5301/ijao.5000516
Conoscenti, G., Schneider, T., Stoelzel, K., Carfì Pavia, F., Brucato, V., Goegele, C., … Schulze-Tanzil, G. (2017). PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Materials Science and Engineering: C, 80, 449-459. doi:10.1016/j.msec.2017.06.011
Dashtdar, H., Murali, M. R., Abbas, A. A., Suhaeb, A. M., Selvaratnam, L., Tay, L. X., & Kamarul, T. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377. doi:10.1007/s00167-013-2723-5
Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337
Fernández, J. M., Cortizo, M. S., & Cortizo, A. M. (2014). Fumarate/Ceramic Composite Based Scaffolds for Tissue Engineering: Evaluation of Hydrophylicity, Degradability, Toxicity and Biocompatibility. Journal of Biomaterials and Tissue Engineering, 4(3), 227-234. doi:10.1166/jbt.2014.1158
García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106
Gordon, S. (2007). The macrophage: Past, present and future. European Journal of Immunology, 37(S1), S9-S17. doi:10.1002/eji.200737638
Goyal, D., Keyhani, S., Lee, E. H., & Hui, J. H. P. (2013). Evidence-Based Status of Microfracture Technique: A Systematic Review of Level I and II Studies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(9), 1579-1588. doi:10.1016/j.arthro.2013.05.027
Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04
Hoemann, C., Kandel, R., Roberts, S., Saris, D. B. F., Creemers, L., Mainil-Varlet, P., … Buschmann, M. D. (2011). International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. CARTILAGE, 2(2), 153-172. doi:10.1177/1947603510397535
Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104(12), 6017-6084. doi:10.1021/cr030441b
Kuo, T.-F., Lin, M.-F., Lin, Y.-H., Lin, Y.-C., Su, R.-J., Lin, H.-W., & Chan, W. P. (2011). Implantation of platelet-rich fibrin and cartilage granules facilitates cartilage repair in the injured rabbit knee: preliminary report. Clinics, 66(10), 1835-1838. doi:10.1590/s1807-59322011001000026
Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. doi:10.2307/2529310
Lao, L., Tan, H., Wang, Y., & Gao, C. (2008). Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 66(2), 218-225. doi:10.1016/j.colsurfb.2008.06.014
Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro
osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260
Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219
Lebourg, M., Martínez-Díaz, S., García-Giralt, N., Torres-Claramunt, R., Ribelles, J. G., Vila-Canet, G., & Monllau, J. (2013). Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study in vivo. Journal of Biomaterials Applications, 28(9), 1304-1315. doi:10.1177/0885328213507298
Luzardo-Alvarez, A., Blarer, N., Peter, K., Romero, J. F., Reymond, C., Corradin, G., & Gander, B. (2005). Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. Journal of Controlled Release, 109(1-3), 62-76. doi:10.1016/j.jconrel.2005.09.015
Mainil-Varlet, P., Van Damme, B., Nesic, D., Knutsen, G., Kandel, R., & Roberts, S. (2010). A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II. The American Journal of Sports Medicine, 38(5), 880-890. doi:10.1177/0363546509359068
Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448
McCormick, F., Harris, J. D., Abrams, G. D., Frank, R., Gupta, A., Hussey, K., … Cole, B. (2014). Trends in the Surgical Treatment of Articular Cartilage Lesions in the United States: An Analysis of a Large Private-Payer Database Over a Period of 8 Years. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(2), 222-226. doi:10.1016/j.arthro.2013.11.001
Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution of in Vivo Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404
Sancho-Tello, M., Forriol, F., de Llano, J. J. M., Antolinos-Turpin, C., Gómez-Tejedor, J. A., Ribelles, J. L. G., & Carda, C. (2017). Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits. The International Journal of Artificial Organs, 40(7), 350-357. doi:10.5301/ijao.5000598
Steadman, J. R., Rodkey, W. G., Briggs, K. K., & Rodrigo, J. J. (1999). The microfracture technique to treat full thickness articular cartilage defects of the knee. Der Orthopäde, 28(1), 26-32. doi:10.1007/pl00003545
Tetè, S., Mastrangelo, F., Carone, L., Nargi, E., Costanzo, G., Vinci, R., … Ciccarelli, R. (2007). Morphostructural Analysis of Human Follicular Stem Cells on Highly Porous Bone Hydroxyapatite Scaffold. International Journal of Immunopathology and Pharmacology, 20(4), 819-826. doi:10.1177/039463200702000418
Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005
Vikingsson, L., Sancho-Tello, M., Ruiz-Saurí, A., Díaz, S. M., Gómez-Tejedor, J. A., Ferrer, G. G., … Ribelles, J. L. G. (2015). Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. The International Journal of Artificial Organs, 38(12), 659-666. doi:10.5301/ijao.5000457
Zan, Q., Wang, C., Dong, L., Cheng, P., & Tian, J. (2008). Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 255(2), 401-403. doi:10.1016/j.apsusc.2008.06.074
Zhang, C., Cai, Y., & Lin, X. (2016). One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32(7), 1444-1450. doi:10.1016/j.arthro.2016.01.061
Zhu, W., Chen, K., Lu, W., Sun, Q., Peng, L., Fen, W., … Zeng, Y. (2013). In vitro study of nano-HA/PLLA composite scaffold for rabbit BMSC differentiation under TGF-β1 induction. In Vitro Cellular & Developmental Biology - Animal, 50(3), 214-220. doi:10.1007/s11626-013-9699-9
[-]