Yu, R. B., & Quirino, J. P. (2019). Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018. TrAC Trends in Analytical Chemistry, 118, 779-792. doi:10.1016/j.trac.2019.07.011
Padró, J. M., & Keunchkarian, S. (2018). State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchemical Journal, 140, 142-157. doi:10.1016/j.microc.2018.04.017
Scriba, G. K. E. (2019). Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends in Analytical Chemistry, 120, 115639. doi:10.1016/j.trac.2019.115639
[+]
Yu, R. B., & Quirino, J. P. (2019). Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018. TrAC Trends in Analytical Chemistry, 118, 779-792. doi:10.1016/j.trac.2019.07.011
Padró, J. M., & Keunchkarian, S. (2018). State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchemical Journal, 140, 142-157. doi:10.1016/j.microc.2018.04.017
Scriba, G. K. E. (2019). Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends in Analytical Chemistry, 120, 115639. doi:10.1016/j.trac.2019.115639
Teixeira, J., Tiritan, M. E., Pinto, M. M. M., & Fernandes, C. (2019). Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules, 24(5), 865. doi:10.3390/molecules24050865
Chankvetadze, B. (2020). Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends in Analytical Chemistry, 122, 115709. doi:10.1016/j.trac.2019.115709
Chankvetadze, B. (2012). Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. Journal of Chromatography A, 1269, 26-51. doi:10.1016/j.chroma.2012.10.033
Cerra, B., Macchiarulo, A., Carotti, A., Camaioni, E., Varfaj, I., Sardella, R., & Gioiello, A. (2020). Enantioselective HPLC Analysis to Assist the Chemical Exploration of Chiral Imidazolines. Molecules, 25(3), 640. doi:10.3390/molecules25030640
Peluso, P., Mamane, V., Aubert, E., & Cossu, S. (2014). Insights into the impact of shape and electronic properties on the enantioseparation of polyhalogenated 4,4′-bipyridines on polysaccharide-type selectors. Evidence of stereoselective halogen bonding interactions. Journal of Chromatography A, 1345, 182-192. doi:10.1016/j.chroma.2014.04.040
Geryk, R., Kalíková, K., Vozka, J., & Tesařová, E. (2014). Immobilized Polysaccharide-Based Stationary Phases for Enantioseparation in Normal Versus Reversed Phase HPLC. Chromatographia, 78(13-14), 909-915. doi:10.1007/s10337-014-2804-8
Matarashvili, I., Ghughunishvili, D., Chankvetadze, L., Takaishvili, N., Khatiashvili, T., Tsintsadze, M., … Chankvetadze, B. (2017). Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical reversed-phase behavior? Journal of Chromatography A, 1483, 86-92. doi:10.1016/j.chroma.2016.12.064
Peng, L., Jayapalan, S., Chankvetadze, B., & Farkas, T. (2010). Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Journal of Chromatography A, 1217(44), 6942-6955. doi:10.1016/j.chroma.2010.08.075
Ghanem, A., & Wang, C. (2018). Enantioselective separation of racemates using CHIRALPAK IG amylose-based chiral stationary phase under normal standard, non-standard and reversed phase high performance liquid chromatography. Journal of Chromatography A, 1532, 89-97. doi:10.1016/j.chroma.2017.11.049
Shedania, Z., Kakava, R., Volonterio, A., Farkas, T., & Chankvetadze, B. (2020). Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. Journal of Chromatography A, 1609, 460445. doi:10.1016/j.chroma.2019.460445
Lämmerhofer, M. (2010). Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. Journal of Chromatography A, 1217(6), 814-856. doi:10.1016/j.chroma.2009.10.022
Scriba, G. K. E. (2012). Chiral Recognition Mechanisms in Analytical Separation Sciences. Chromatographia, 75(15-16), 815-838. doi:10.1007/s10337-012-2261-1
Shen, J., & Okamoto, Y. (2015). Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chemical Reviews, 116(3), 1094-1138. doi:10.1021/acs.chemrev.5b00317
Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881k
Ikai, T., & Okamoto, Y. (2009). Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chemical Reviews, 109(11), 6077-6101. doi:10.1021/cr8005558
Shen, J., Ikai, T., & Okamoto, Y. (2014). Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. Journal of Chromatography A, 1363, 51-61. doi:10.1016/j.chroma.2014.06.042
KASAT, R., WEE, S., LOH, J., WANG, N., & FRANSES, E. (2008). Effect of the solute molecular structure on its enantioresolution on cellulose tris(3,5-dimethylphenylcarbamate)☆. Journal of Chromatography B, 875(1), 81-92. doi:10.1016/j.jchromb.2008.06.045
Del Rio, A. (2009). Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. Journal of Separation Science, 32(10), 1566-1584. doi:10.1002/jssc.200800693
Sheridan, R., Schafer, W., Piras, P., Zawatzky, K., Sherer, E. C., Roussel, C., & Welch, C. J. (2016). Toward structure-based predictive tools for the selection of chiral stationary phases for the chromatographic separation of enantiomers. Journal of Chromatography A, 1467, 206-213. doi:10.1016/j.chroma.2016.05.066
Booth, T. D., & Wainer, I. W. (1996). Mechanistic investigation into the enantioselective separation of mexiletine and related compounds, chromatographed on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. Journal of Chromatography A, 741(2), 205-211. doi:10.1016/0021-9673(96)00208-7
Montanari, C. A., Cass, Q. B., Tiritan, M. E., & Souza, A. L. S. de. (2000). A QSERR study on enantioselective separation of enantiomeric sulphoxides. Analytica Chimica Acta, 419(1), 93-100. doi:10.1016/s0003-2670(00)00962-4
Pisani, L., Rullo, M., Catto, M., de Candia, M., Carrieri, A., Cellamare, S., & Altomare, C. D. (2018). Structure-property relationship study of the HPLC enantioselective retention of neuroprotective 7-[(1-alkylpiperidin-3-yl)methoxy]coumarin derivatives on an amylose-based chiral stationary phase. Journal of Separation Science, 41(6), 1376-1384. doi:10.1002/jssc.201701442
Rasulev, B., Turabekova, M., Gorska, M., Kulig, K., Bielejewska, A., Lipkowski, J., & Leszczynski, J. (2011). Use of quantitative structure-enantioselective retention relationship for the liquid chromatography chiral separation prediction of the series of pyrrolidin-2-one compounds. Chirality, 24(1), 72-77. doi:10.1002/chir.21028
Khater, S., Lozac’h, M.-A., Adam, I., Francotte, E., & West, C. (2016). Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases. Journal of Chromatography A, 1467, 463-472. doi:10.1016/j.chroma.2016.06.060
Szaleniec, M., Dudzik, A., Pawul, M., & Kozik, B. (2009). Quantitative structure enantioselective retention relationship for high-performance liquid chromatography chiral separation of 1-phenylethanol derivatives. Journal of Chromatography A, 1216(34), 6224-6235. doi:10.1016/j.chroma.2009.07.002
Carradori, S., Pierini, M., Menta, S., Secci, D., Fioravanti, R., & Cirilli, R. (2016). 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1 H )-pyrazole: A fascinating molecular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. Part I. Structure-enantioselectivity relationships. Journal of Chromatography A, 1467, 221-227. doi:10.1016/j.chroma.2016.07.034
Martín-Biosca, Y., Escuder-Gilabert, L., Medina-Hernández, M. J., & Sagrado, S. (2018). Modelling the enantioresolution capability of cellulose tris(3,5-dichlorophenylcarbamate) stationary phase in reversed phase conditions for neutral and basic chiral compounds. Journal of Chromatography A, 1567, 111-118. doi:10.1016/j.chroma.2018.06.061
Asensi-Bernardi, L., Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M. J., & Sagrado, S. (2013). Modeling the chiral resolution ability of highly sulfated β-cyclodextrin for basic compounds in electrokinetic chromatography. Journal of Chromatography A, 1308, 152-160. doi:10.1016/j.chroma.2013.08.003
Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M. J., & Sagrado, S. (2016). Enantioresolution in electrokinetic chromatography-complete filling technique using sulfated gamma-cyclodextrin. Software-free topological anticipation. Journal of Chromatography A, 1467, 391-399. doi:10.1016/j.chroma.2016.06.028
ChemSpider Database. Royal Society of Chemistry. http://www.chemspider.com/ (accessed 21.2.18).
CAMO Software AS.http://www.camo.com/ (accessed 21.2.18).
MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/stats/sequentialfs.html. (accessed 21.4.20).
MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/matlab/ref/fminsearch.html. (accessed 21.4.20).
MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/stats/bbdesign.html. (accessed 21.4.20).
[-]