Mostrar el registro sencillo del ítem
dc.contributor.author | Perez-Baeza, Mireia | es_ES |
dc.contributor.author | Escuder-Gilabert, Laura | es_ES |
dc.contributor.author | Martín-Biosca, Yolanda | es_ES |
dc.contributor.author | Sagrado Vives, Salvador | es_ES |
dc.contributor.author | Medina-Hernández, María José | es_ES |
dc.date.accessioned | 2021-07-21T03:31:34Z | |
dc.date.available | 2021-07-21T03:31:34Z | |
dc.date.issued | 2020-08-16 | es_ES |
dc.identifier.issn | 0021-9673 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169647 | |
dc.description.abstract | [EN] Polysaccharide-based chiral stationary phases (CSPs) are the most used chiral selectors in HPLC. These CSPs can be used in normal, polar organic and aqueous-organic mobile phases. However, normal and polar organic mobile phases are not adequate for chiral separation of polar compounds, for the analysis of aqueous samples and for MS detection. In these situations, reversed phase conditions, without the usual non-volatile additives incompatible with MS detection, are preferable. Moreover, in most of the reported chiral chromatographic methods, retention is too large for routine work. In this paper, the chiral separation of 53 structurally unrelated compounds is studied using three commercial amylose-based CSPs -coated amylose tris(3,5-dimethylphenylcarbamate) (Am1), coated amylose tris(5-chloro-2-methylphenylcarbamate) (Am2), and immobilised amylose tris(3-chloro-5-methylphenylcarbamate) (Am3)-. Chiral separations are carried out using acetonitrile/ammonium bicarbonate (pH = 8.0) mixtures, reversed mobile phases compatible with MS detection. To provide realistic conditions for routine analysis, maximum retention factors are set to 15. Retention and enantioresolution behaviour of compounds in those CSPs are compared. On the other hand, to compare and describe the resolution ability of these CSPs, 58 structural variables of the compounds are tested to model for the first time a categorical enantioresolution (CRs) for Am1 and Am3 CSPs. Discriminant partial least squares, for one response categorical variable (DPLS1) is used for feature selection, modelling. The final DPLS1 models showed good descriptive ability. | es_ES |
dc.description.sponsorship | The authors acknowledge the Spanish Ministerio de Economia y Competitividad (MINECO) and the European Regional Development Fund (ERDF) for the financial support (Project CTQ2015-70904-R, MINECO/FEDER, UE). Mireia Perez Baeza is grateful to the Generalitat Valenciana and the European Social Fund for the financial support (ACIF/2019/158 research contract). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Chromatography A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Amylose-based chiral stationary phases | es_ES |
dc.subject | Reversed phase liquid hromatography | es_ES |
dc.subject | Enantioresolution modelling and description | es_ES |
dc.subject | Discriminant partial least squares | es_ES |
dc.subject | Feature selection | es_ES |
dc.title | Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chroma.2020.461281 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F158/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-70904-R/ES/ESTUDIO DE LA BIODEGRADACION ENANTIOSELECTIVA DE CONTAMINANTES EMERGENTES QUIRALES. IMPLICACIONES Y RIESGOS PARA LA SALUD Y MEDIO AMBIENTE./ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Perez-Baeza, M.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Sagrado Vives, S.; Medina-Hernández, MJ. (2020). Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions. Journal of Chromatography A. 1625:1-9. https://doi.org/10.1016/j.chroma.2020.461281 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chroma.2020.461281 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1625 | es_ES |
dc.identifier.pmid | 32709332 | es_ES |
dc.relation.pasarela | S\436560 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Yu, R. B., & Quirino, J. P. (2019). Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018. TrAC Trends in Analytical Chemistry, 118, 779-792. doi:10.1016/j.trac.2019.07.011 | es_ES |
dc.description.references | Padró, J. M., & Keunchkarian, S. (2018). State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchemical Journal, 140, 142-157. doi:10.1016/j.microc.2018.04.017 | es_ES |
dc.description.references | Scriba, G. K. E. (2019). Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends in Analytical Chemistry, 120, 115639. doi:10.1016/j.trac.2019.115639 | es_ES |
dc.description.references | Teixeira, J., Tiritan, M. E., Pinto, M. M. M., & Fernandes, C. (2019). Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules, 24(5), 865. doi:10.3390/molecules24050865 | es_ES |
dc.description.references | Chankvetadze, B. (2020). Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends in Analytical Chemistry, 122, 115709. doi:10.1016/j.trac.2019.115709 | es_ES |
dc.description.references | Chankvetadze, B. (2012). Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. Journal of Chromatography A, 1269, 26-51. doi:10.1016/j.chroma.2012.10.033 | es_ES |
dc.description.references | Cerra, B., Macchiarulo, A., Carotti, A., Camaioni, E., Varfaj, I., Sardella, R., & Gioiello, A. (2020). Enantioselective HPLC Analysis to Assist the Chemical Exploration of Chiral Imidazolines. Molecules, 25(3), 640. doi:10.3390/molecules25030640 | es_ES |
dc.description.references | Peluso, P., Mamane, V., Aubert, E., & Cossu, S. (2014). Insights into the impact of shape and electronic properties on the enantioseparation of polyhalogenated 4,4′-bipyridines on polysaccharide-type selectors. Evidence of stereoselective halogen bonding interactions. Journal of Chromatography A, 1345, 182-192. doi:10.1016/j.chroma.2014.04.040 | es_ES |
dc.description.references | Geryk, R., Kalíková, K., Vozka, J., & Tesařová, E. (2014). Immobilized Polysaccharide-Based Stationary Phases for Enantioseparation in Normal Versus Reversed Phase HPLC. Chromatographia, 78(13-14), 909-915. doi:10.1007/s10337-014-2804-8 | es_ES |
dc.description.references | Matarashvili, I., Ghughunishvili, D., Chankvetadze, L., Takaishvili, N., Khatiashvili, T., Tsintsadze, M., … Chankvetadze, B. (2017). Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical reversed-phase behavior? Journal of Chromatography A, 1483, 86-92. doi:10.1016/j.chroma.2016.12.064 | es_ES |
dc.description.references | Peng, L., Jayapalan, S., Chankvetadze, B., & Farkas, T. (2010). Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Journal of Chromatography A, 1217(44), 6942-6955. doi:10.1016/j.chroma.2010.08.075 | es_ES |
dc.description.references | Ghanem, A., & Wang, C. (2018). Enantioselective separation of racemates using CHIRALPAK IG amylose-based chiral stationary phase under normal standard, non-standard and reversed phase high performance liquid chromatography. Journal of Chromatography A, 1532, 89-97. doi:10.1016/j.chroma.2017.11.049 | es_ES |
dc.description.references | Shedania, Z., Kakava, R., Volonterio, A., Farkas, T., & Chankvetadze, B. (2020). Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. Journal of Chromatography A, 1609, 460445. doi:10.1016/j.chroma.2019.460445 | es_ES |
dc.description.references | Lämmerhofer, M. (2010). Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. Journal of Chromatography A, 1217(6), 814-856. doi:10.1016/j.chroma.2009.10.022 | es_ES |
dc.description.references | Scriba, G. K. E. (2012). Chiral Recognition Mechanisms in Analytical Separation Sciences. Chromatographia, 75(15-16), 815-838. doi:10.1007/s10337-012-2261-1 | es_ES |
dc.description.references | Shen, J., & Okamoto, Y. (2015). Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chemical Reviews, 116(3), 1094-1138. doi:10.1021/acs.chemrev.5b00317 | es_ES |
dc.description.references | Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881k | es_ES |
dc.description.references | Ikai, T., & Okamoto, Y. (2009). Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chemical Reviews, 109(11), 6077-6101. doi:10.1021/cr8005558 | es_ES |
dc.description.references | Shen, J., Ikai, T., & Okamoto, Y. (2014). Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. Journal of Chromatography A, 1363, 51-61. doi:10.1016/j.chroma.2014.06.042 | es_ES |
dc.description.references | KASAT, R., WEE, S., LOH, J., WANG, N., & FRANSES, E. (2008). Effect of the solute molecular structure on its enantioresolution on cellulose tris(3,5-dimethylphenylcarbamate)☆. Journal of Chromatography B, 875(1), 81-92. doi:10.1016/j.jchromb.2008.06.045 | es_ES |
dc.description.references | Del Rio, A. (2009). Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. Journal of Separation Science, 32(10), 1566-1584. doi:10.1002/jssc.200800693 | es_ES |
dc.description.references | Sheridan, R., Schafer, W., Piras, P., Zawatzky, K., Sherer, E. C., Roussel, C., & Welch, C. J. (2016). Toward structure-based predictive tools for the selection of chiral stationary phases for the chromatographic separation of enantiomers. Journal of Chromatography A, 1467, 206-213. doi:10.1016/j.chroma.2016.05.066 | es_ES |
dc.description.references | Booth, T. D., & Wainer, I. W. (1996). Mechanistic investigation into the enantioselective separation of mexiletine and related compounds, chromatographed on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. Journal of Chromatography A, 741(2), 205-211. doi:10.1016/0021-9673(96)00208-7 | es_ES |
dc.description.references | Montanari, C. A., Cass, Q. B., Tiritan, M. E., & Souza, A. L. S. de. (2000). A QSERR study on enantioselective separation of enantiomeric sulphoxides. Analytica Chimica Acta, 419(1), 93-100. doi:10.1016/s0003-2670(00)00962-4 | es_ES |
dc.description.references | Pisani, L., Rullo, M., Catto, M., de Candia, M., Carrieri, A., Cellamare, S., & Altomare, C. D. (2018). Structure-property relationship study of the HPLC enantioselective retention of neuroprotective 7-[(1-alkylpiperidin-3-yl)methoxy]coumarin derivatives on an amylose-based chiral stationary phase. Journal of Separation Science, 41(6), 1376-1384. doi:10.1002/jssc.201701442 | es_ES |
dc.description.references | Rasulev, B., Turabekova, M., Gorska, M., Kulig, K., Bielejewska, A., Lipkowski, J., & Leszczynski, J. (2011). Use of quantitative structure-enantioselective retention relationship for the liquid chromatography chiral separation prediction of the series of pyrrolidin-2-one compounds. Chirality, 24(1), 72-77. doi:10.1002/chir.21028 | es_ES |
dc.description.references | Khater, S., Lozac’h, M.-A., Adam, I., Francotte, E., & West, C. (2016). Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases. Journal of Chromatography A, 1467, 463-472. doi:10.1016/j.chroma.2016.06.060 | es_ES |
dc.description.references | Szaleniec, M., Dudzik, A., Pawul, M., & Kozik, B. (2009). Quantitative structure enantioselective retention relationship for high-performance liquid chromatography chiral separation of 1-phenylethanol derivatives. Journal of Chromatography A, 1216(34), 6224-6235. doi:10.1016/j.chroma.2009.07.002 | es_ES |
dc.description.references | Carradori, S., Pierini, M., Menta, S., Secci, D., Fioravanti, R., & Cirilli, R. (2016). 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1 H )-pyrazole: A fascinating molecular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. Part I. Structure-enantioselectivity relationships. Journal of Chromatography A, 1467, 221-227. doi:10.1016/j.chroma.2016.07.034 | es_ES |
dc.description.references | Martín-Biosca, Y., Escuder-Gilabert, L., Medina-Hernández, M. J., & Sagrado, S. (2018). Modelling the enantioresolution capability of cellulose tris(3,5-dichlorophenylcarbamate) stationary phase in reversed phase conditions for neutral and basic chiral compounds. Journal of Chromatography A, 1567, 111-118. doi:10.1016/j.chroma.2018.06.061 | es_ES |
dc.description.references | Asensi-Bernardi, L., Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M. J., & Sagrado, S. (2013). Modeling the chiral resolution ability of highly sulfated β-cyclodextrin for basic compounds in electrokinetic chromatography. Journal of Chromatography A, 1308, 152-160. doi:10.1016/j.chroma.2013.08.003 | es_ES |
dc.description.references | Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M. J., & Sagrado, S. (2016). Enantioresolution in electrokinetic chromatography-complete filling technique using sulfated gamma-cyclodextrin. Software-free topological anticipation. Journal of Chromatography A, 1467, 391-399. doi:10.1016/j.chroma.2016.06.028 | es_ES |
dc.description.references | ChemSpider Database. Royal Society of Chemistry. http://www.chemspider.com/ (accessed 21.2.18). | es_ES |
dc.description.references | CAMO Software AS.http://www.camo.com/ (accessed 21.2.18). | es_ES |
dc.description.references | MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/stats/sequentialfs.html. (accessed 21.4.20). | es_ES |
dc.description.references | MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/matlab/ref/fminsearch.html. (accessed 21.4.20). | es_ES |
dc.description.references | MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/stats/bbdesign.html. (accessed 21.4.20). | es_ES |