- -

Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Baeza, Mireia es_ES
dc.contributor.author Escuder-Gilabert, Laura es_ES
dc.contributor.author Martín-Biosca, Yolanda es_ES
dc.contributor.author Sagrado Vives, Salvador es_ES
dc.contributor.author Medina-Hernández, María José es_ES
dc.date.accessioned 2021-07-21T03:31:34Z
dc.date.available 2021-07-21T03:31:34Z
dc.date.issued 2020-08-16 es_ES
dc.identifier.issn 0021-9673 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169647
dc.description.abstract [EN] Polysaccharide-based chiral stationary phases (CSPs) are the most used chiral selectors in HPLC. These CSPs can be used in normal, polar organic and aqueous-organic mobile phases. However, normal and polar organic mobile phases are not adequate for chiral separation of polar compounds, for the analysis of aqueous samples and for MS detection. In these situations, reversed phase conditions, without the usual non-volatile additives incompatible with MS detection, are preferable. Moreover, in most of the reported chiral chromatographic methods, retention is too large for routine work. In this paper, the chiral separation of 53 structurally unrelated compounds is studied using three commercial amylose-based CSPs -coated amylose tris(3,5-dimethylphenylcarbamate) (Am1), coated amylose tris(5-chloro-2-methylphenylcarbamate) (Am2), and immobilised amylose tris(3-chloro-5-methylphenylcarbamate) (Am3)-. Chiral separations are carried out using acetonitrile/ammonium bicarbonate (pH = 8.0) mixtures, reversed mobile phases compatible with MS detection. To provide realistic conditions for routine analysis, maximum retention factors are set to 15. Retention and enantioresolution behaviour of compounds in those CSPs are compared. On the other hand, to compare and describe the resolution ability of these CSPs, 58 structural variables of the compounds are tested to model for the first time a categorical enantioresolution (CRs) for Am1 and Am3 CSPs. Discriminant partial least squares, for one response categorical variable (DPLS1) is used for feature selection, modelling. The final DPLS1 models showed good descriptive ability. es_ES
dc.description.sponsorship The authors acknowledge the Spanish Ministerio de Economia y Competitividad (MINECO) and the European Regional Development Fund (ERDF) for the financial support (Project CTQ2015-70904-R, MINECO/FEDER, UE). Mireia Perez Baeza is grateful to the Generalitat Valenciana and the European Social Fund for the financial support (ACIF/2019/158 research contract). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Chromatography A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Amylose-based chiral stationary phases es_ES
dc.subject Reversed phase liquid hromatography es_ES
dc.subject Enantioresolution modelling and description es_ES
dc.subject Discriminant partial least squares es_ES
dc.subject Feature selection es_ES
dc.title Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chroma.2020.461281 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F158/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70904-R/ES/ESTUDIO DE LA BIODEGRADACION ENANTIOSELECTIVA DE CONTAMINANTES EMERGENTES QUIRALES. IMPLICACIONES Y RIESGOS PARA LA SALUD Y MEDIO AMBIENTE./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Perez-Baeza, M.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Sagrado Vives, S.; Medina-Hernández, MJ. (2020). Comparative modelling study on enantioresolution of structurally unrelated compounds with amylose-based chiral stationary phases in reversed phase liquid chromatography-mass spectrometry conditions. Journal of Chromatography A. 1625:1-9. https://doi.org/10.1016/j.chroma.2020.461281 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chroma.2020.461281 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1625 es_ES
dc.identifier.pmid 32709332 es_ES
dc.relation.pasarela S\436560 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Yu, R. B., & Quirino, J. P. (2019). Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018. TrAC Trends in Analytical Chemistry, 118, 779-792. doi:10.1016/j.trac.2019.07.011 es_ES
dc.description.references Padró, J. M., & Keunchkarian, S. (2018). State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchemical Journal, 140, 142-157. doi:10.1016/j.microc.2018.04.017 es_ES
dc.description.references Scriba, G. K. E. (2019). Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends in Analytical Chemistry, 120, 115639. doi:10.1016/j.trac.2019.115639 es_ES
dc.description.references Teixeira, J., Tiritan, M. E., Pinto, M. M. M., & Fernandes, C. (2019). Chiral Stationary Phases for Liquid Chromatography: Recent Developments. Molecules, 24(5), 865. doi:10.3390/molecules24050865 es_ES
dc.description.references Chankvetadze, B. (2020). Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends in Analytical Chemistry, 122, 115709. doi:10.1016/j.trac.2019.115709 es_ES
dc.description.references Chankvetadze, B. (2012). Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. Journal of Chromatography A, 1269, 26-51. doi:10.1016/j.chroma.2012.10.033 es_ES
dc.description.references Cerra, B., Macchiarulo, A., Carotti, A., Camaioni, E., Varfaj, I., Sardella, R., & Gioiello, A. (2020). Enantioselective HPLC Analysis to Assist the Chemical Exploration of Chiral Imidazolines. Molecules, 25(3), 640. doi:10.3390/molecules25030640 es_ES
dc.description.references Peluso, P., Mamane, V., Aubert, E., & Cossu, S. (2014). Insights into the impact of shape and electronic properties on the enantioseparation of polyhalogenated 4,4′-bipyridines on polysaccharide-type selectors. Evidence of stereoselective halogen bonding interactions. Journal of Chromatography A, 1345, 182-192. doi:10.1016/j.chroma.2014.04.040 es_ES
dc.description.references Geryk, R., Kalíková, K., Vozka, J., & Tesařová, E. (2014). Immobilized Polysaccharide-Based Stationary Phases for Enantioseparation in Normal Versus Reversed Phase HPLC. Chromatographia, 78(13-14), 909-915. doi:10.1007/s10337-014-2804-8 es_ES
dc.description.references Matarashvili, I., Ghughunishvili, D., Chankvetadze, L., Takaishvili, N., Khatiashvili, T., Tsintsadze, M., … Chankvetadze, B. (2017). Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical reversed-phase behavior? Journal of Chromatography A, 1483, 86-92. doi:10.1016/j.chroma.2016.12.064 es_ES
dc.description.references Peng, L., Jayapalan, S., Chankvetadze, B., & Farkas, T. (2010). Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Journal of Chromatography A, 1217(44), 6942-6955. doi:10.1016/j.chroma.2010.08.075 es_ES
dc.description.references Ghanem, A., & Wang, C. (2018). Enantioselective separation of racemates using CHIRALPAK IG amylose-based chiral stationary phase under normal standard, non-standard and reversed phase high performance liquid chromatography. Journal of Chromatography A, 1532, 89-97. doi:10.1016/j.chroma.2017.11.049 es_ES
dc.description.references Shedania, Z., Kakava, R., Volonterio, A., Farkas, T., & Chankvetadze, B. (2020). Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. Journal of Chromatography A, 1609, 460445. doi:10.1016/j.chroma.2019.460445 es_ES
dc.description.references Lämmerhofer, M. (2010). Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. Journal of Chromatography A, 1217(6), 814-856. doi:10.1016/j.chroma.2009.10.022 es_ES
dc.description.references Scriba, G. K. E. (2012). Chiral Recognition Mechanisms in Analytical Separation Sciences. Chromatographia, 75(15-16), 815-838. doi:10.1007/s10337-012-2261-1 es_ES
dc.description.references Shen, J., & Okamoto, Y. (2015). Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chemical Reviews, 116(3), 1094-1138. doi:10.1021/acs.chemrev.5b00317 es_ES
dc.description.references Okamoto, Y., & Ikai, T. (2008). Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 37(12), 2593. doi:10.1039/b808881k es_ES
dc.description.references Ikai, T., & Okamoto, Y. (2009). Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chemical Reviews, 109(11), 6077-6101. doi:10.1021/cr8005558 es_ES
dc.description.references Shen, J., Ikai, T., & Okamoto, Y. (2014). Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. Journal of Chromatography A, 1363, 51-61. doi:10.1016/j.chroma.2014.06.042 es_ES
dc.description.references KASAT, R., WEE, S., LOH, J., WANG, N., & FRANSES, E. (2008). Effect of the solute molecular structure on its enantioresolution on cellulose tris(3,5-dimethylphenylcarbamate)☆. Journal of Chromatography B, 875(1), 81-92. doi:10.1016/j.jchromb.2008.06.045 es_ES
dc.description.references Del Rio, A. (2009). Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. Journal of Separation Science, 32(10), 1566-1584. doi:10.1002/jssc.200800693 es_ES
dc.description.references Sheridan, R., Schafer, W., Piras, P., Zawatzky, K., Sherer, E. C., Roussel, C., & Welch, C. J. (2016). Toward structure-based predictive tools for the selection of chiral stationary phases for the chromatographic separation of enantiomers. Journal of Chromatography A, 1467, 206-213. doi:10.1016/j.chroma.2016.05.066 es_ES
dc.description.references Booth, T. D., & Wainer, I. W. (1996). Mechanistic investigation into the enantioselective separation of mexiletine and related compounds, chromatographed on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. Journal of Chromatography A, 741(2), 205-211. doi:10.1016/0021-9673(96)00208-7 es_ES
dc.description.references Montanari, C. A., Cass, Q. B., Tiritan, M. E., & Souza, A. L. S. de. (2000). A QSERR study on enantioselective separation of enantiomeric sulphoxides. Analytica Chimica Acta, 419(1), 93-100. doi:10.1016/s0003-2670(00)00962-4 es_ES
dc.description.references Pisani, L., Rullo, M., Catto, M., de Candia, M., Carrieri, A., Cellamare, S., & Altomare, C. D. (2018). Structure-property relationship study of the HPLC enantioselective retention of neuroprotective 7-[(1-alkylpiperidin-3-yl)methoxy]coumarin derivatives on an amylose-based chiral stationary phase. Journal of Separation Science, 41(6), 1376-1384. doi:10.1002/jssc.201701442 es_ES
dc.description.references Rasulev, B., Turabekova, M., Gorska, M., Kulig, K., Bielejewska, A., Lipkowski, J., & Leszczynski, J. (2011). Use of quantitative structure-enantioselective retention relationship for the liquid chromatography chiral separation prediction of the series of pyrrolidin-2-one compounds. Chirality, 24(1), 72-77. doi:10.1002/chir.21028 es_ES
dc.description.references Khater, S., Lozac’h, M.-A., Adam, I., Francotte, E., & West, C. (2016). Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases. Journal of Chromatography A, 1467, 463-472. doi:10.1016/j.chroma.2016.06.060 es_ES
dc.description.references Szaleniec, M., Dudzik, A., Pawul, M., & Kozik, B. (2009). Quantitative structure enantioselective retention relationship for high-performance liquid chromatography chiral separation of 1-phenylethanol derivatives. Journal of Chromatography A, 1216(34), 6224-6235. doi:10.1016/j.chroma.2009.07.002 es_ES
dc.description.references Carradori, S., Pierini, M., Menta, S., Secci, D., Fioravanti, R., & Cirilli, R. (2016). 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1 H )-pyrazole: A fascinating molecular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. Part I. Structure-enantioselectivity relationships. Journal of Chromatography A, 1467, 221-227. doi:10.1016/j.chroma.2016.07.034 es_ES
dc.description.references Martín-Biosca, Y., Escuder-Gilabert, L., Medina-Hernández, M. J., & Sagrado, S. (2018). Modelling the enantioresolution capability of cellulose tris(3,5-dichlorophenylcarbamate) stationary phase in reversed phase conditions for neutral and basic chiral compounds. Journal of Chromatography A, 1567, 111-118. doi:10.1016/j.chroma.2018.06.061 es_ES
dc.description.references Asensi-Bernardi, L., Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M. J., & Sagrado, S. (2013). Modeling the chiral resolution ability of highly sulfated β-cyclodextrin for basic compounds in electrokinetic chromatography. Journal of Chromatography A, 1308, 152-160. doi:10.1016/j.chroma.2013.08.003 es_ES
dc.description.references Escuder-Gilabert, L., Martín-Biosca, Y., Medina-Hernández, M. J., & Sagrado, S. (2016). Enantioresolution in electrokinetic chromatography-complete filling technique using sulfated gamma-cyclodextrin. Software-free topological anticipation. Journal of Chromatography A, 1467, 391-399. doi:10.1016/j.chroma.2016.06.028 es_ES
dc.description.references ChemSpider Database. Royal Society of Chemistry. http://www.chemspider.com/ (accessed 21.2.18). es_ES
dc.description.references CAMO Software AS.http://www.camo.com/ (accessed 21.2.18). es_ES
dc.description.references MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/stats/sequentialfs.html. (accessed 21.4.20). es_ES
dc.description.references MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/matlab/ref/fminsearch.html. (accessed 21.4.20). es_ES
dc.description.references MATLAB® R2019a (Mathworks®) web site. https://www.mathworks.com/help/stats/bbdesign.html. (accessed 21.4.20). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem