- -

Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies

Mostrar el registro completo del ítem

Perez-Baeza, M.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Sagrado Vives, S.; Medina-Hernández, MJ. (2020). Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies. Journal of Chromatography A. 1625:1-9. https://doi.org/10.1016/j.chroma.2020.461334

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169650

Ficheros en el ítem

Metadatos del ítem

Título: Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies
Autor: Perez-Baeza, Mireia Escuder-Gilabert, Laura Martín-Biosca, Yolanda Sagrado Vives, Salvador Medina-Hernández, María José
Fecha difusión:
Resumen:
[EN] A comprehensive study on the chiral separation of bupivacaine, mepivacaine, prilocaine and propanocaine with eight commercial polysaccharide-based chiral stationary phases (CSPs) in reversed phase conditions compatible ...[+]
Palabras clave: Local anaesthetics , Cellulose and amylose-based chiral stationary phases , Reversed phase conditions , Enantioselective biodegradation study
Derechos de uso: Cerrado
Fuente:
Journal of Chromatography A. (issn: 0021-9673 )
DOI: 10.1016/j.chroma.2020.461334
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.chroma.2020.461334
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F158/
info:eu-repo/grantAgreement/MINECO//CTQ2015-70904-R/ES/ESTUDIO DE LA BIODEGRADACION ENANTIOSELECTIVA DE CONTAMINANTES EMERGENTES QUIRALES. IMPLICACIONES Y RIESGOS PARA LA SALUD Y MEDIO AMBIENTE./
Agradecimientos:
The authors acknowledge the Spanish Ministerio de Economia y Competitividad (MINECO) and the European Regional Development Fund (ERDF) for the financial support (Project CTQ2015-70904-R, MINECO/FEDER, UE). Mireia Perez ...[+]
Tipo: Artículo

References

Becker, D. E., & Reed, K. L. (2012). Local Anesthetics: Review of Pharmacological Considerations. Anesthesia Progress, 59(2), 90-102. doi:10.2344/0003-3006-59.2.90

Gitman, M., Fettiplace, M. R., Weinberg, G. L., Neal, J. M., & Barrington, M. J. (2019). Local Anesthetic Systemic Toxicity. Plastic and Reconstructive Surgery, 144(3), 783-795. doi:10.1097/prs.0000000000005989

Shedania, Z., Kakava, R., Volonterio, A., Farkas, T., & Chankvetadze, B. (2020). Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. Journal of Chromatography A, 1609, 460445. doi:10.1016/j.chroma.2019.460445 [+]
Becker, D. E., & Reed, K. L. (2012). Local Anesthetics: Review of Pharmacological Considerations. Anesthesia Progress, 59(2), 90-102. doi:10.2344/0003-3006-59.2.90

Gitman, M., Fettiplace, M. R., Weinberg, G. L., Neal, J. M., & Barrington, M. J. (2019). Local Anesthetic Systemic Toxicity. Plastic and Reconstructive Surgery, 144(3), 783-795. doi:10.1097/prs.0000000000005989

Shedania, Z., Kakava, R., Volonterio, A., Farkas, T., & Chankvetadze, B. (2020). Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. Journal of Chromatography A, 1609, 460445. doi:10.1016/j.chroma.2019.460445

Chankvetadze, B. (2020). Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends in Analytical Chemistry, 122, 115709. doi:10.1016/j.trac.2019.115709

Stringham, R. W., & Ye, Y. K. (2006). Chiral separation of amines by high-performance liquid chromatography using polysaccharide stationary phases and acidic additives. Journal of Chromatography A, 1101(1-2), 86-93. doi:10.1016/j.chroma.2005.09.065

Zhang, T., Nguyen, D., Franco, P., Isobe, Y., Michishita, T., & Murakami, T. (2008). Cellulose tris(3,5-dichlorophenylcarbamate) immobilised on silica: A novel chiral stationary phase for resolution of enantiomers. Journal of Pharmaceutical and Biomedical Analysis, 46(5), 882-891. doi:10.1016/j.jpba.2007.06.008

Dossou, K. S. S., Chiap, P., Chankvetadze, B., Servais, A.-C., Fillet, M., & Crommen, J. (2009). Enantioresolution of basic pharmaceuticals using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral stationary phase and polar organic mobile phases. Journal of Chromatography A, 1216(44), 7450-7455. doi:10.1016/j.chroma.2009.05.081

Dossou, K. S. S., Chiap, P., Chankvetadze, B., Servais, A.-C., Fillet, M., & Crommen, J. (2010). Optimization of the LC enantioseparation of chiral pharmaceuticals using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral selector and polar non-aqueous mobile phases. Journal of Separation Science, 33(12), 1699-1707. doi:10.1002/jssc.201000049

Dossou, K. S. S., Chiap, P., Servais, A. C., Fillet, M., & Crommen, J. (2011). Evaluation of chlorine containing cellulose-based chiral stationary phases for the LC enantioseparation of basic pharmaceuticals using polar non-aqueous mobile phases. Journal of Separation Science, 34(6), 617-622. doi:10.1002/jssc.201000774

Dossou, K. S. S., Chiap, P., Servais, A.-C., Fillet, M., & Crommen, J. (2011). Development and validation of a LC method for the enantiomeric purity determination of S-ropivacaine in a pharmaceutical formulation using a recently commercialized cellulose-based chiral stationary phase and polar non-aqueous mobile phase. Journal of Pharmaceutical and Biomedical Analysis, 54(4), 687-693. doi:10.1016/j.jpba.2010.10.020

Zhang, T., Franco, P., Nguyen, D., Hamasaki, R., Miyamoto, S., Ohnishi, A., & Murakami, T. (2012). Complementary enantiorecognition patterns and specific method optimization aspects on immobilized polysaccharide-derived chiral stationary phases. Journal of Chromatography A, 1269, 178-188. doi:10.1016/j.chroma.2012.09.071

Peng, L., Jayapalan, S., Chankvetadze, B., & Farkas, T. (2010). Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Journal of Chromatography A, 1217(44), 6942-6955. doi:10.1016/j.chroma.2010.08.075

Zhang, T., Nguyen, D., & Franco, P. (2010). Reversed-phase screening strategies for liquid chromatography on polysaccharide-derived chiral stationary phases. Journal of Chromatography A, 1217(7), 1048-1055. doi:10.1016/j.chroma.2009.11.040

Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27. doi:10.1016/j.watres.2014.08.053

Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., … Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57-65. doi:10.1016/j.iswcr.2015.03.002

Sanganyado, E., Lu, Z., Fu, Q., Schlenk, D., & Gan, J. (2017). Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research, 124, 527-542. doi:10.1016/j.watres.2017.08.003

Wong, C. S. (2006). Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Analytical and Bioanalytical Chemistry, 386(3), 544-558. doi:10.1007/s00216-006-0424-3

Kasprzyk-Hordern, B. (2010). Pharmacologically active compounds in the environment and their chirality. Chemical Society Reviews, 39(11), 4466. doi:10.1039/c000408c

Ribeiro, A. R., Santos, L. H. M. L. M., Maia, A. S., Delerue-Matos, C., Castro, P. M. L., & Tiritan, M. E. (2014). Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1363, 226-235. doi:10.1016/j.chroma.2014.06.099

Escuder-Gilabert, L., Martín-Biosca, Y., Perez-Baeza, M., Sagrado, S., & Medina-Hernández, M. J. (2018). Trimeprazine is enantioselectively degraded by an activated sludge in ready biodegradability test conditions. Water Research, 141, 57-64. doi:10.1016/j.watres.2018.05.008

Escuder-Gilabert, L., Martín-Biosca, Y., Perez-Baeza, M., Sagrado, S., & Medina-Hernández, M. J. (2018). Direct chromatographic study of the enantioselective biodegradation of ibuprofen and ketoprofen by an activated sludge. Journal of Chromatography A, 1568, 140-148. doi:10.1016/j.chroma.2018.07.034

Frédéric, O., & Yves, P. (2014). Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, 115, 31-39. doi:10.1016/j.chemosphere.2014.01.016

Asimakopoulos, A. G., Kannan, P., Higgins, S., & Kannan, K. (2017). Determination of 89 drugs and other micropollutants in unfiltered wastewater and freshwater by LC-MS/MS: an alternative sample preparation approach. Analytical and Bioanalytical Chemistry, 409(26), 6205-6225. doi:10.1007/s00216-017-0561-x

Rúa-Gómez, P. C., & Püttmann, W. (2011). Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants. Environmental Science and Pollution Research, 19(3), 689-699. doi:10.1007/s11356-011-0614-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem