- -

Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Baeza, Mireia es_ES
dc.contributor.author Escuder-Gilabert, Laura es_ES
dc.contributor.author Martín-Biosca, Yolanda es_ES
dc.contributor.author Sagrado Vives, Salvador es_ES
dc.contributor.author Medina-Hernández, María José es_ES
dc.date.accessioned 2021-07-21T03:31:42Z
dc.date.available 2021-07-21T03:31:42Z
dc.date.issued 2020-08-16 es_ES
dc.identifier.issn 0021-9673 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169650
dc.description.abstract [EN] A comprehensive study on the chiral separation of bupivacaine, mepivacaine, prilocaine and propanocaine with eight commercial polysaccharide-based chiral stationary phases (CSPs) in reversed phase conditions compatible with MS detection is performed. Methanol and acetonitrile are used as organic modifiers. Retention and resolution values obtained for each compound in the different CSPs and mobile phases are compared. The polysaccharide-based CSPs tested present different enantioselectivity towards the analytes. From the results, the experimental conditions for determining the enantiomers of bupivacaine, mepivacaine, prilocaine and propanocaine in saline aqueous samples using MS detection are used, for the first time, to perform an enantioselective biodegradability study. (C) 2020 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship The authors acknowledge the Spanish Ministerio de Economia y Competitividad (MINECO) and the European Regional Development Fund (ERDF) for the financial support (Project CTQ2015-70904-R, MINECO/FEDER, UE). Mireia Perez Baeza acknowledges to Generalitat Valenciana and European Social Fund for the contribution to the contract ACIF/2019/158 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Chromatography A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Local anaesthetics es_ES
dc.subject Cellulose and amylose-based chiral stationary phases es_ES
dc.subject Reversed phase conditions es_ES
dc.subject Enantioselective biodegradation study es_ES
dc.title Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chroma.2020.461334 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F158/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70904-R/ES/ESTUDIO DE LA BIODEGRADACION ENANTIOSELECTIVA DE CONTAMINANTES EMERGENTES QUIRALES. IMPLICACIONES Y RIESGOS PARA LA SALUD Y MEDIO AMBIENTE./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Perez-Baeza, M.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Sagrado Vives, S.; Medina-Hernández, MJ. (2020). Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies. Journal of Chromatography A. 1625:1-9. https://doi.org/10.1016/j.chroma.2020.461334 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chroma.2020.461334 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1625 es_ES
dc.identifier.pmid 32709359 es_ES
dc.relation.pasarela S\436559 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Becker, D. E., & Reed, K. L. (2012). Local Anesthetics: Review of Pharmacological Considerations. Anesthesia Progress, 59(2), 90-102. doi:10.2344/0003-3006-59.2.90 es_ES
dc.description.references Gitman, M., Fettiplace, M. R., Weinberg, G. L., Neal, J. M., & Barrington, M. J. (2019). Local Anesthetic Systemic Toxicity. Plastic and Reconstructive Surgery, 144(3), 783-795. doi:10.1097/prs.0000000000005989 es_ES
dc.description.references Shedania, Z., Kakava, R., Volonterio, A., Farkas, T., & Chankvetadze, B. (2020). Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases. Journal of Chromatography A, 1609, 460445. doi:10.1016/j.chroma.2019.460445 es_ES
dc.description.references Chankvetadze, B. (2020). Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC Trends in Analytical Chemistry, 122, 115709. doi:10.1016/j.trac.2019.115709 es_ES
dc.description.references Stringham, R. W., & Ye, Y. K. (2006). Chiral separation of amines by high-performance liquid chromatography using polysaccharide stationary phases and acidic additives. Journal of Chromatography A, 1101(1-2), 86-93. doi:10.1016/j.chroma.2005.09.065 es_ES
dc.description.references Zhang, T., Nguyen, D., Franco, P., Isobe, Y., Michishita, T., & Murakami, T. (2008). Cellulose tris(3,5-dichlorophenylcarbamate) immobilised on silica: A novel chiral stationary phase for resolution of enantiomers. Journal of Pharmaceutical and Biomedical Analysis, 46(5), 882-891. doi:10.1016/j.jpba.2007.06.008 es_ES
dc.description.references Dossou, K. S. S., Chiap, P., Chankvetadze, B., Servais, A.-C., Fillet, M., & Crommen, J. (2009). Enantioresolution of basic pharmaceuticals using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral stationary phase and polar organic mobile phases. Journal of Chromatography A, 1216(44), 7450-7455. doi:10.1016/j.chroma.2009.05.081 es_ES
dc.description.references Dossou, K. S. S., Chiap, P., Chankvetadze, B., Servais, A.-C., Fillet, M., & Crommen, J. (2010). Optimization of the LC enantioseparation of chiral pharmaceuticals using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral selector and polar non-aqueous mobile phases. Journal of Separation Science, 33(12), 1699-1707. doi:10.1002/jssc.201000049 es_ES
dc.description.references Dossou, K. S. S., Chiap, P., Servais, A. C., Fillet, M., & Crommen, J. (2011). Evaluation of chlorine containing cellulose-based chiral stationary phases for the LC enantioseparation of basic pharmaceuticals using polar non-aqueous mobile phases. Journal of Separation Science, 34(6), 617-622. doi:10.1002/jssc.201000774 es_ES
dc.description.references Dossou, K. S. S., Chiap, P., Servais, A.-C., Fillet, M., & Crommen, J. (2011). Development and validation of a LC method for the enantiomeric purity determination of S-ropivacaine in a pharmaceutical formulation using a recently commercialized cellulose-based chiral stationary phase and polar non-aqueous mobile phase. Journal of Pharmaceutical and Biomedical Analysis, 54(4), 687-693. doi:10.1016/j.jpba.2010.10.020 es_ES
dc.description.references Zhang, T., Franco, P., Nguyen, D., Hamasaki, R., Miyamoto, S., Ohnishi, A., & Murakami, T. (2012). Complementary enantiorecognition patterns and specific method optimization aspects on immobilized polysaccharide-derived chiral stationary phases. Journal of Chromatography A, 1269, 178-188. doi:10.1016/j.chroma.2012.09.071 es_ES
dc.description.references Peng, L., Jayapalan, S., Chankvetadze, B., & Farkas, T. (2010). Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. Journal of Chromatography A, 1217(44), 6942-6955. doi:10.1016/j.chroma.2010.08.075 es_ES
dc.description.references Zhang, T., Nguyen, D., & Franco, P. (2010). Reversed-phase screening strategies for liquid chromatography on polysaccharide-derived chiral stationary phases. Journal of Chromatography A, 1217(7), 1048-1055. doi:10.1016/j.chroma.2009.11.040 es_ES
dc.description.references Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3-27. doi:10.1016/j.watres.2014.08.053 es_ES
dc.description.references Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., … Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57-65. doi:10.1016/j.iswcr.2015.03.002 es_ES
dc.description.references Sanganyado, E., Lu, Z., Fu, Q., Schlenk, D., & Gan, J. (2017). Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research, 124, 527-542. doi:10.1016/j.watres.2017.08.003 es_ES
dc.description.references Wong, C. S. (2006). Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Analytical and Bioanalytical Chemistry, 386(3), 544-558. doi:10.1007/s00216-006-0424-3 es_ES
dc.description.references Kasprzyk-Hordern, B. (2010). Pharmacologically active compounds in the environment and their chirality. Chemical Society Reviews, 39(11), 4466. doi:10.1039/c000408c es_ES
dc.description.references Ribeiro, A. R., Santos, L. H. M. L. M., Maia, A. S., Delerue-Matos, C., Castro, P. M. L., & Tiritan, M. E. (2014). Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1363, 226-235. doi:10.1016/j.chroma.2014.06.099 es_ES
dc.description.references Escuder-Gilabert, L., Martín-Biosca, Y., Perez-Baeza, M., Sagrado, S., & Medina-Hernández, M. J. (2018). Trimeprazine is enantioselectively degraded by an activated sludge in ready biodegradability test conditions. Water Research, 141, 57-64. doi:10.1016/j.watres.2018.05.008 es_ES
dc.description.references Escuder-Gilabert, L., Martín-Biosca, Y., Perez-Baeza, M., Sagrado, S., & Medina-Hernández, M. J. (2018). Direct chromatographic study of the enantioselective biodegradation of ibuprofen and ketoprofen by an activated sludge. Journal of Chromatography A, 1568, 140-148. doi:10.1016/j.chroma.2018.07.034 es_ES
dc.description.references Frédéric, O., & Yves, P. (2014). Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, 115, 31-39. doi:10.1016/j.chemosphere.2014.01.016 es_ES
dc.description.references Asimakopoulos, A. G., Kannan, P., Higgins, S., & Kannan, K. (2017). Determination of 89 drugs and other micropollutants in unfiltered wastewater and freshwater by LC-MS/MS: an alternative sample preparation approach. Analytical and Bioanalytical Chemistry, 409(26), 6205-6225. doi:10.1007/s00216-017-0561-x es_ES
dc.description.references Rúa-Gómez, P. C., & Püttmann, W. (2011). Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants. Environmental Science and Pollution Research, 19(3), 689-699. doi:10.1007/s11356-011-0614-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem