- -

Machine Learning and Virtual Reality on Body Movements¿ Behaviors to Classify Children with Autism Spectrum Disorder

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine Learning and Virtual Reality on Body Movements¿ Behaviors to Classify Children with Autism Spectrum Disorder

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Minissi, Maria Eleonora es_ES
dc.contributor.author Teruel Garcia, Gonzalo es_ES
dc.contributor.author Abad, Luis es_ES
dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.date.accessioned 2021-07-22T03:33:37Z
dc.date.available 2021-07-22T03:33:37Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169737
dc.description.abstract [EN] Autism spectrum disorder (ASD) is mostly diagnosed according to behavioral symptoms in sensory, social, and motor domains. Improper motor functioning, during diagnosis, involves the qualitative evaluation of stereotyped and repetitive behaviors, while quantitative methods that classify body movements' frequencies of children with ASD are less addressed. Recent advances in neuroscience, technology, and data analysis techniques are improving the quantitative and ecological validity methods to measure specific functioning in ASD children. On one side, cutting-edge technologies, such as cameras, sensors, and virtual reality can accurately detect and classify behavioral biomarkers, as body movements in real-life simulations. On the other, machine-learning techniques are showing the potential for identifying and classifying patients' subgroups. Starting from these premises, three real-simulated imitation tasks have been implemented in a virtual reality system whose aim is to investigate if machine-learning methods on movement features and frequency could be useful in discriminating ASD children from children with typical neurodevelopment. In this experiment, 24 children with ASD and 25 children with typical neurodevelopment participated in a multimodal virtual reality experience, and changes in their body movements were tracked by a depth sensor camera during the presentation of visual, auditive, and olfactive stimuli. The main results showed that ASD children presented larger body movements than TD children, and that head, trunk, and feet represent the maximum classification with an accuracy of 82.98%. Regarding stimuli, visual condition showed the highest accuracy (89.36%), followed by the visual-auditive stimuli (74.47%), and visual-auditive-olfactory stimuli (70.21%). Finally, the head showed the most consistent performance along with the stimuli, from 80.85% in visual to 89.36% in visual-auditive-olfactory condition. The findings showed the feasibility of applying machine learning and virtual reality to identify body movements' biomarkers that could contribute to improving ASD diagnosis. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy, Industry, and Competitiveness funded project "Immersive virtual environment for the evaluation and training of children with autism spectrum disorder: T Room" (IDI-20170912) and by the Generalitat Valenciana funded project REBRAND (PROMETEO/2019/105). Furthermore, this work was co-founded by the European Union through the Operational Program of the European Regional development Fund (ERDF) of the Valencian Community 2014-2020 (IDIFEDER/2018/029). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Journal of Clinical Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Autism spectrum disorder es_ES
dc.subject Body movements es_ES
dc.subject Repetitive behaviors es_ES
dc.subject Virtual reality es_ES
dc.subject Machine learning es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Machine Learning and Virtual Reality on Body Movements¿ Behaviors to Classify Children with Autism Spectrum Disorder es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jcm9051260 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IDI-20170912/ES/Virtual Immersive Environment for the Assessment and Training of Autism Spectrum Disorder children (T-ROOM)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029/ES/INTERFACES DE REALIDAD MIXTA APLICADA A SALUD Y TOMA DE DECISIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Alcañiz Raya, ML.; Marín-Morales, J.; Minissi, ME.; Teruel Garcia, G.; Abad, L.; Chicchi-Giglioli, IA. (2020). Machine Learning and Virtual Reality on Body Movements¿ Behaviors to Classify Children with Autism Spectrum Disorder. Journal of Clinical Medicine. 9(5):1-20. https://doi.org/10.3390/jcm9051260 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jcm9051260 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2077-0383 es_ES
dc.identifier.pmid 32357517 es_ES
dc.identifier.pmcid PMC7287942 es_ES
dc.relation.pasarela S\409578 es_ES
dc.contributor.funder CEDECO RED CENIT S.L. es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders es_ES
dc.description.references Anagnostou, E., Zwaigenbaum, L., Szatmari, P., Fombonne, E., Fernandez, B. A., Woodbury-Smith, M., … Scherer, S. W. (2014). Autism spectrum disorder: advances in evidence-based practice. Canadian Medical Association Journal, 186(7), 509-519. doi:10.1503/cmaj.121756 es_ES
dc.description.references Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism From 2 to 9 Years of Age. Archives of General Psychiatry, 63(6), 694. doi:10.1001/archpsyc.63.6.694 es_ES
dc.description.references Schmidt, L., Kirchner, J., Strunz, S., Broźus, J., Ritter, K., Roepke, S., & Dziobek, I. (2015). Psychosocial Functioning and Life Satisfaction in Adults With Autism Spectrum Disorder Without Intellectual Impairment. Journal of Clinical Psychology, 71(12), 1259-1268. doi:10.1002/jclp.22225 es_ES
dc.description.references Turner, M. (1999). Annotation: Repetitive Behaviour in Autism: A Review of Psychological Research. Journal of Child Psychology and Psychiatry, 40(6), 839-849. doi:10.1111/1469-7610.00502 es_ES
dc.description.references Lewis, M. H., & Bodfish, J. W. (1998). Repetitive behavior disorders in autism. Mental Retardation and Developmental Disabilities Research Reviews, 4(2), 80-89. doi:10.1002/(sici)1098-2779(1998)4:2<80::aid-mrdd4>3.0.co;2-0 es_ES
dc.description.references Mahone, E. M., Bridges, D., Prahme, C., & Singer, H. S. (2004). Repetitive arm and hand movements (complex motor stereotypies) in children. The Journal of Pediatrics, 145(3), 391-395. doi:10.1016/j.jpeds.2004.06.014 es_ES
dc.description.references MacDonald, R., Green, G., Mansfield, R., Geckeler, A., Gardenier, N., Anderson, J., … Sanchez, J. (2007). Stereotypy in young children with autism and typically developing children. Research in Developmental Disabilities, 28(3), 266-277. doi:10.1016/j.ridd.2006.01.004 es_ES
dc.description.references Singer, H. S. (2009). Motor Stereotypies. Seminars in Pediatric Neurology, 16(2), 77-81. doi:10.1016/j.spen.2009.03.008 es_ES
dc.description.references Lidstone, J., Uljarević, M., Sullivan, J., Rodgers, J., McConachie, H., Freeston, M., … Leekam, S. (2014). Relations among restricted and repetitive behaviors, anxiety and sensory features in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 8(2), 82-92. doi:10.1016/j.rasd.2013.10.001 es_ES
dc.description.references GOLDMAN, S., WANG, C., SALGADO, M. W., GREENE, P. E., KIM, M., & RAPIN, I. (2009). Motor stereotypies in children with autism and other developmental disorders. Developmental Medicine & Child Neurology, 51(1), 30-38. doi:10.1111/j.1469-8749.2008.03178.x es_ES
dc.description.references Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659-685. doi:10.1007/bf02172145 es_ES
dc.description.references Volkmar, F. R., State, M., & Klin, A. (2009). Autism and autism spectrum disorders: diagnostic issues for the coming decade. Journal of Child Psychology and Psychiatry, 50(1-2), 108-115. doi:10.1111/j.1469-7610.2008.02010.x es_ES
dc.description.references Reaven, J. A., Hepburn, S. L., & Ross, R. G. (2008). Use of the ADOS and ADI-R in Children with Psychosis: Importance of Clinical Judgment. Clinical Child Psychology and Psychiatry, 13(1), 81-94. doi:10.1177/1359104507086343 es_ES
dc.description.references Torres, E. B., Brincker, M., Isenhower, R. W., Yanovich, P., Stigler, K. A., Nurnberger, J. I., … José, J. V. (2013). Autism: the micro-movement perspective. Frontiers in Integrative Neuroscience, 7. doi:10.3389/fnint.2013.00032 es_ES
dc.description.references Möricke, E., Buitelaar, J. K., & Rommelse, N. N. J. (2015). Do We Need Multiple Informants When Assessing Autistic Traits? The Degree of Report Bias on Offspring, Self, and Spouse Ratings. Journal of Autism and Developmental Disorders, 46(1), 164-175. doi:10.1007/s10803-015-2562-y es_ES
dc.description.references CHAYTOR, N., SCHMITTEREDGECOMBE, M., & BURR, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217-227. doi:10.1016/j.acn.2005.12.002 es_ES
dc.description.references Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62(3), 193-217. doi:10.1037/h0047470 es_ES
dc.description.references Gillberg, C., & Rasmussen, P. (1994). Brief report: Four case histories and a literature review of williams syndrome and autistic behavior. Journal of Autism and Developmental Disorders, 24(3), 381-393. doi:10.1007/bf02172235 es_ES
dc.description.references Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138-157. doi:10.1016/j.edurev.2016.08.001 es_ES
dc.description.references Francis, K. (2005). Autism interventions: a critical update. Developmental Medicine & Child Neurology, 47(7), 493-499. doi:10.1017/s0012162205000952 es_ES
dc.description.references Albinali, F., Goodwin, M. S., & Intille, S. S. (2009). Recognizing stereotypical motor movements in the laboratory and classroom. Proceedings of the 11th international conference on Ubiquitous computing. doi:10.1145/1620545.1620555 es_ES
dc.description.references Pyles, D. A. M., Riordan, M. M., & Bailey, J. S. (1997). The stereotypy analysis: An instrument for examining environmental variables associated with differential rates of stereotypic behavior. Research in Developmental Disabilities, 18(1), 11-38. doi:10.1016/s0891-4222(96)00034-0 es_ES
dc.description.references Nosek, B. A., Hawkins, C. B., & Frazier, R. S. (2011). Implicit social cognition: from measures to mechanisms. Trends in Cognitive Sciences, 15(4), 152-159. doi:10.1016/j.tics.2011.01.005 es_ES
dc.description.references Forscher, P. S., Lai, C. K., Axt, J. R., Ebersole, C. R., Herman, M., Devine, P. G., & Nosek, B. A. (2019). A meta-analysis of procedures to change implicit measures. Journal of Personality and Social Psychology, 117(3), 522-559. doi:10.1037/pspa0000160 es_ES
dc.description.references LeDoux, J. E., & Pine, D. S. (2016). Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework. American Journal of Psychiatry, 173(11), 1083-1093. doi:10.1176/appi.ajp.2016.16030353 es_ES
dc.description.references Fenning, R. M., Baker, J. K., Baucom, B. R., Erath, S. A., Howland, M. A., & Moffitt, J. (2017). Electrodermal Variability and Symptom Severity in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 47(4), 1062-1072. doi:10.1007/s10803-016-3021-0 es_ES
dc.description.references Nikula, R. (1991). Psychological Correlates of Nonspecific Skin Conductance Responses. Psychophysiology, 28(1), 86-90. doi:10.1111/j.1469-8986.1991.tb03392.x es_ES
dc.description.references Alcañiz Raya, M., Chicchi Giglioli, I. A., Marín-Morales, J., Higuera-Trujillo, J. L., Olmos, E., Minissi, M. E., … Abad, L. (2020). Application of Supervised Machine Learning for Behavioral Biomarkers of Autism Spectrum Disorder Based on Electrodermal Activity and Virtual Reality. Frontiers in Human Neuroscience, 14. doi:10.3389/fnhum.2020.00090 es_ES
dc.description.references Cunningham, W. A., Raye, C. L., & Johnson, M. K. (2004). Implicit and Explicit Evaluation: fMRI Correlates of Valence, Emotional Intensity, and Control in the Processing of Attitudes. Journal of Cognitive Neuroscience, 16(10), 1717-1729. doi:10.1162/0898929042947919 es_ES
dc.description.references Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00549 es_ES
dc.description.references Nickel, P., & Nachreiner, F. (2003). Sensitivity and Diagnosticity of the 0.1-Hz Component of Heart Rate Variability as an Indicator of Mental Workload. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(4), 575-590. doi:10.1518/hfes.45.4.575.27094 es_ES
dc.description.references Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2013). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. doi:10.1038/mp.2013.78 es_ES
dc.description.references Van Hecke, A. V., Lebow, J., Bal, E., Lamb, D., Harden, E., Kramer, A., … Porges, S. W. (2009). Electroencephalogram and Heart Rate Regulation to Familiar and Unfamiliar People in Children With Autism Spectrum Disorders. Child Development, 80(4), 1118-1133. doi:10.1111/j.1467-8624.2009.01320.x es_ES
dc.description.references Coronato, A., De Pietro, G., & Paragliola, G. (2014). A situation-aware system for the detection of motion disorders of patients with Autism Spectrum Disorders. Expert Systems with Applications, 41(17), 7868-7877. doi:10.1016/j.eswa.2014.05.011 es_ES
dc.description.references Goodwin, M. S., Intille, S. S., Albinali, F., & Velicer, W. F. (2010). Automated Detection of Stereotypical Motor Movements. Journal of Autism and Developmental Disorders, 41(6), 770-782. doi:10.1007/s10803-010-1102-z es_ES
dc.description.references Rodrigues, J. L., Gonçalves, N., Costa, S., & Soares, F. (2013). Stereotyped movement recognition in children with ASD. Sensors and Actuators A: Physical, 202, 162-169. doi:10.1016/j.sna.2013.04.019 es_ES
dc.description.references Crippa, A., Salvatore, C., Perego, P., Forti, S., Nobile, M., Molteni, M., & Castiglioni, I. (2015). Use of Machine Learning to Identify Children with Autism and Their Motor Abnormalities. Journal of Autism and Developmental Disorders, 45(7), 2146-2156. doi:10.1007/s10803-015-2379-8 es_ES
dc.description.references Wedyan, M., Al-Jumaily, A., & Crippa, A. (2019). Using machine learning to perform early diagnosis of Autism Spectrum Disorder based on simple upper limb movements. International Journal of Hybrid Intelligent Systems, 15(4), 195-206. doi:10.3233/his-190278 es_ES
dc.description.references Parsons, S., Mitchell, P., & Leonard, A. (2004). The Use and Understanding of Virtual Environments by Adolescents with Autistic Spectrum Disorders. Journal of Autism and Developmental Disorders, 34(4), 449-466. doi:10.1023/b:jadd.0000037421.98517.8d es_ES
dc.description.references Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: A review. Developmental Neurorehabilitation, 12(4), 224-238. doi:10.1080/17518420902991719 es_ES
dc.description.references Bowman, D. A., Gabbard, J. L., & Hix, D. (2002). A Survey of Usability Evaluation in Virtual Environments: Classification and Comparison of Methods. Presence: Teleoperators and Virtual Environments, 11(4), 404-424. doi:10.1162/105474602760204309 es_ES
dc.description.references Pastorelli, E., & Herrmann, H. (2013). A Small-scale, Low-budget Semi-immersive Virtual Environment for Scientific Visualization and Research. Procedia Computer Science, 25, 14-22. doi:10.1016/j.procs.2013.11.003 es_ES
dc.description.references Cobb, S. V. G., Nichols, S., Ramsey, A., & Wilson, J. R. (1999). Virtual Reality-Induced Symptoms and Effects (VRISE). Presence: Teleoperators and Virtual Environments, 8(2), 169-186. doi:10.1162/105474699566152 es_ES
dc.description.references Wallace, S., Parsons, S., Westbury, A., White, K., White, K., & Bailey, A. (2010). Sense of presence and atypical social judgments in immersive virtual environments. Autism, 14(3), 199-213. doi:10.1177/1362361310363283 es_ES
dc.description.references Lorenzo, G., Lledó, A., Arráez-Vera, G., & Lorenzo-Lledó, A. (2018). The application of immersive virtual reality for students with ASD: A review between 1990–2017. Education and Information Technologies, 24(1), 127-151. doi:10.1007/s10639-018-9766-7 es_ES
dc.description.references Bailenson, J. N., Yee, N., Merget, D., & Schroeder, R. (2006). The Effect of Behavioral Realism and Form Realism of Real-Time Avatar Faces on Verbal Disclosure, Nonverbal Disclosure, Emotion Recognition, and Copresence in Dyadic Interaction. Presence: Teleoperators and Virtual Environments, 15(4), 359-372. doi:10.1162/pres.15.4.359 es_ES
dc.description.references Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.02086 es_ES
dc.description.references Cummings, J. J., & Bailenson, J. N. (2015). How Immersive Is Enough? A Meta-Analysis of the Effect of Immersive Technology on User Presence. Media Psychology, 19(2), 272-309. doi:10.1080/15213269.2015.1015740 es_ES
dc.description.references Skalski, P., & Tamborini, R. (2007). The Role of Social Presence in Interactive Agent-Based Persuasion. Media Psychology, 10(3), 385-413. doi:10.1080/15213260701533102 es_ES
dc.description.references Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. doi:10.1098/rstb.2009.0138 es_ES
dc.description.references Baños, R. M., Botella, C., Garcia-Palacios, A., Villa, H., Perpiña, C., & Alcañiz, M. (2000). Presence and Reality Judgment in Virtual Environments: A Unitary Construct? CyberPsychology & Behavior, 3(3), 327-335. doi:10.1089/10949310050078760 es_ES
dc.description.references Bente, G., Rüggenberg, S., Krämer, N. C., & Eschenburg, F. (2008). Avatar-Mediated Networking: Increasing Social Presence and Interpersonal Trust in Net-Based Collaborations. Human Communication Research, 34(2), 287-318. doi:10.1111/j.1468-2958.2008.00322.x es_ES
dc.description.references Heeter, C. (1992). Being There: The Subjective Experience of Presence. Presence: Teleoperators and Virtual Environments, 1(2), 262-271. doi:10.1162/pres.1992.1.2.262 es_ES
dc.description.references Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. doi:10.1038/nrn1651 es_ES
dc.description.references Mohr, D. C., Burns, M. N., Schueller, S. M., Clarke, G., & Klinkman, M. (2013). Behavioral Intervention Technologies: Evidence review and recommendations for future research in mental health. General Hospital Psychiatry, 35(4), 332-338. doi:10.1016/j.genhosppsych.2013.03.008 es_ES
dc.description.references Neguț, A., Matu, S.-A., Sava, F. A., & David, D. (2016). Virtual reality measures in neuropsychological assessment: a meta-analytic review. The Clinical Neuropsychologist, 30(2), 165-184. doi:10.1080/13854046.2016.1144793 es_ES
dc.description.references Riva, G. (2005). Virtual Reality in Psychotherapy: Review. CyberPsychology & Behavior, 8(3), 220-230. doi:10.1089/cpb.2005.8.220 es_ES
dc.description.references Valmaggia, L. R., Latif, L., Kempton, M. J., & Rus-Calafell, M. (2016). Virtual reality in the psychological treatment for mental health problems: An systematic review of recent evidence. Psychiatry Research, 236, 189-195. doi:10.1016/j.psychres.2016.01.015 es_ES
dc.description.references Mesa-Gresa, P., Gil-Gómez, H., Lozano-Quilis, J.-A., & Gil-Gómez, J.-A. (2018). Effectiveness of Virtual Reality for Children and Adolescents with Autism Spectrum Disorder: An Evidence-Based Systematic Review. Sensors, 18(8), 2486. doi:10.3390/s18082486 es_ES
dc.description.references Cheng, Y., & Ye, J. (2010). Exploring the social competence of students with autism spectrum conditions in a collaborative virtual learning environment – The pilot study. Computers & Education, 54(4), 1068-1077. doi:10.1016/j.compedu.2009.10.011 es_ES
dc.description.references Jarrold, W., Mundy, P., Gwaltney, M., Bailenson, J., Hatt, N., McIntyre, N., … Swain, L. (2013). Social Attention in a Virtual Public Speaking Task in Higher Functioning Children With Autism. Autism Research, 6(5), 393-410. doi:10.1002/aur.1302 es_ES
dc.description.references Forgeot d’Arc, B., Ramus, F., Lefebvre, A., Brottier, D., Zalla, T., Moukawane, S., … Delorme, R. (2014). Atypical Social Judgment and Sensitivity to Perceptual Cues in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 46(5), 1574-1581. doi:10.1007/s10803-014-2208-5 es_ES
dc.description.references Maskey, M., Lowry, J., Rodgers, J., McConachie, H., & Parr, J. R. (2014). Reducing Specific Phobia/Fear in Young People with Autism Spectrum Disorders (ASDs) through a Virtual Reality Environment Intervention. PLoS ONE, 9(7), e100374. doi:10.1371/journal.pone.0100374 es_ES
dc.description.references Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1377-1383. doi:10.1098/rstb.2008.0337 es_ES
dc.description.references Tomchek, S. D., Huebner, R. A., & Dunn, W. (2014). Patterns of sensory processing in children with an autism spectrum disorder. Research in Autism Spectrum Disorders, 8(9), 1214-1224. doi:10.1016/j.rasd.2014.06.006 es_ES
dc.description.references Boyd, B. A., Baranek, G. T., Sideris, J., Poe, M. D., Watson, L. R., Patten, E., & Miller, H. (2010). Sensory features and repetitive behaviors in children with autism and developmental delays. Autism Research, n/a-n/a. doi:10.1002/aur.124 es_ES
dc.description.references Gabriels, R. L., Agnew, J. A., Miller, L. J., Gralla, J., Pan, Z., Goldson, E., … Hooks, E. (2008). Is there a relationship between restricted, repetitive, stereotyped behaviors and interests and abnormal sensory response in children with autism spectrum disorders? Research in Autism Spectrum Disorders, 2(4), 660-670. doi:10.1016/j.rasd.2008.02.002 es_ES
dc.description.references Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172-186. doi:10.1109/tpami.2019.2929257 es_ES
dc.description.references Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support Vector Algorithms. Neural Computation, 12(5), 1207-1245. doi:10.1162/089976600300015565 es_ES
dc.description.references Yan, K., & Zhang, D. (2015). Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212, 353-363. doi:10.1016/j.snb.2015.02.025 es_ES
dc.description.references Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199 es_ES
dc.description.references O’Neill, M., & Jones, R. S. P. (1997). Journal of Autism and Developmental Disorders, 27(3), 283-293. doi:10.1023/a:1025850431170 es_ES
dc.description.references Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., & Wallace, M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381-389. doi:10.1007/s00221-010-2240-4 es_ES
dc.description.references Courchesne, E., Lincoln, A. J., Kilman, B. A., & Galambos, R. (1985). Event-related brain potential correlates of the processing of novel visual and auditory information in autism. Journal of Autism and Developmental Disorders, 15(1), 55-76. doi:10.1007/bf01837899 es_ES
dc.description.references Russo, N., Foxe, J. J., Brandwein, A. B., Altschuler, T., Gomes, H., & Molholm, S. (2010). Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration. Autism Research, 3(5), 253-267. doi:10.1002/aur.152 es_ES
dc.description.references Ament, K., Mejia, A., Buhlman, R., Erklin, S., Caffo, B., Mostofsky, S., & Wodka, E. (2014). Evidence for Specificity of Motor Impairments in Catching and Balance in Children with Autism. Journal of Autism and Developmental Disorders, 45(3), 742-751. doi:10.1007/s10803-014-2229-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem