- -

Determinación de la temperatura de la superficie terrestre mediante imágenes Landsat 8: Estudio comparativo de algoritmos sobre la ciudad de Granada

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determinación de la temperatura de la superficie terrestre mediante imágenes Landsat 8: Estudio comparativo de algoritmos sobre la ciudad de Granada

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hidalgo-García, David es_ES
dc.coverage.spatial east=-3.5985571; north=37.1773363; name=Granada, Espanya es_ES
dc.date.accessioned 2021-07-22T07:07:06Z
dc.date.available 2021-07-22T07:07:06Z
dc.date.issued 2021-07-21
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/169762
dc.description.abstract [EN] The use of satellite images has become, in recent decades, one of the most common ways to determine the Land Surface Temperature (LST). One of them is through the use of Landsat 8 images that requires the use of single-channel (MC) and two-channel (BC) algorithms. In this study, the LST of a medium-sized city, Granada (Spain) has been determined over a year by using five Landsat 8 algorithms that are subsequently compared with ambient temperatures. Few studies compare the data source with the seasonal variations of the same metropolis, which together with its geographical location, high pollution and the significant thermal variations it experiences make it a suitable place for the development of this research. As a result of the statistical analysis process, the regression coefficients R2, mean square error (RMSE), mean error bias (MBE) and standard deviation (SD) were obtained. The average results obtained reveal that the LST derived from the BC algorithms (1.0 °C) are the closest to the ambient temperatures in contrast to the MC (-5.6 °C), although important variations have been verified between the different zones of the city according to its coverage and seasonal periods. Therefore, it is concluded that the BC algorithms are the most suitable for recovering the LST of the city under study. es_ES
dc.description.abstract [ES] El empleo de imágenes satelitales se ha convertido, en las últimas décadas, en una de las formas más habituales para determinar la Temperatura de la Superficie Terrestre (TST). Una de ellas es mediante el empleo de imágenes Landsat 8 que requiere del uso de algoritmos del tipo monocanal (MC) y bicanal (BC). En este estudio se ha determinado la TST de una ciudad de tamaño medio, Granada (España) a lo largo de un año mediante el empleo de cinco algoritmos Landsat 8 que posteriormente se comparan con las temperaturas ambientales. Pocos estudios comparan la fuente de datos con las variaciones estacio-temporales de una misma metrópolis lo que unido a su situación geográfica, alta contaminación y las importantes variaciones térmicas que experimenta la convierten en un lugar adecuado para el desarrollo de esta investigación. Como resultado del proceso de análisis estadístico se obtuvieron los coeficientes de regresión R2, el error medio cuadrático (RMSE), sesgo medio del error (MBE) y la desviación estándar (DE). Los resultados medios obtenidos revelan que las TST derivada de los algoritmos BC (1,0 °C) son las más próximas a las temperaturas ambientales en contraposición con los MC (-5,6 °C) aunque se han verificado importantes variaciones entre las distintas zonas de la urbe según su cobertura y los periodos estacionales. Por todo ello, se concluye que los algoritmos BC son los más adecuados para recuperar la TST de la urbe objeto de estudio. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Landsat 8 es_ES
dc.subject Land surface temperature es_ES
dc.subject Thermal infrared data es_ES
dc.subject Remote sensing es_ES
dc.subject Algorithms es_ES
dc.subject Temperatura superficie terrestre es_ES
dc.subject Datos infrarrojos es_ES
dc.subject Teledetección es_ES
dc.subject Algoritmos es_ES
dc.title Determinación de la temperatura de la superficie terrestre mediante imágenes Landsat 8: Estudio comparativo de algoritmos sobre la ciudad de Granada es_ES
dc.title.alternative Determination of land surface temperature using Landsat 8 images: Comparative study of algorithms on the city of Granada es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2021.14538
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hidalgo-García, D. (2021). Determinación de la temperatura de la superficie terrestre mediante imágenes Landsat 8: Estudio comparativo de algoritmos sobre la ciudad de Granada. Revista de Teledetección. 0(58):1-21. https://doi.org/10.4995/raet.2021.14538 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2021.14538 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 58 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\14538 es_ES
dc.description.references Avdan, U., Jovanovska, G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1480307. https://doi.org/10.1155/2016/1480307 es_ES
dc.description.references Barbieri, T., Despini, F., Teggi, S. 2018. A multi-temporal analyses of Land Surface Temperature using Landsat-8 data and open source software: The case study of Modena, Italy. Sustainability (Switzerland), 10(5), 1678. https://doi.org/10.3390/ su10051678 es_ES
dc.description.references Becker, F., Li, Z. 1995. Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote sensing reviews, 12(3-4), 225-253. https://doi.org/10.1080/02757259509532286 es_ES
dc.description.references Carlson, T.N., Ripley, D.A. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1 es_ES
dc.description.references Chavez, P.S. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459-479. https://doi.org/10.1016/0034-4257(88)90019-3 es_ES
dc.description.references Coll, C., Caselles, V., Galve, J.M., Valor, E., Niclòs, R., Sánchez, J.M., Rivas, R. 2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment, 97(3), 288-300. https://doi.org/10.1016/j.rse.2005.05.007 es_ES
dc.description.references Coll, C., Valor, E., Galve, J.M., Mira, M., Bisquert, M., García-Santos, V., Caselles, E., Caselles, V. 2012. Long-term accuracy assessment of land surface temperatures derived from the Advanced Along-Track Scanning Radiometer. Remote Sensing of Environment, 116, 211-225. https://doi.org/10.1016/j.rse.2010.01.027 es_ES
dc.description.references Congedo, L. 2016. Semi-Automatic Classification Plugin Documentation Release 4.8.0.1. Release, 4(0.1), 29. https://doi.org/10.13140/RG.2.2.29474.02242/1 es_ES
dc.description.references De Castro, M., Gallardo, C., Jylha, K., Tuomenvirta, H. 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81, 329-341. https://doi.org/10.1007/s10584-006-9224-1 es_ES
dc.description.references Du, C., Ren, H., Qin, Q., Meng, J., Zhao, S. 2015. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sensing, 7(1), 647-665. https://doi.org/10.3390/rs70100647 es_ES
dc.description.references Du, J., Xiang, X., Zhao, B., y Zhou, H. 2020. Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat imagery. Sustainable Cities and Society, 61(June), 102346. https://doi.org/10.1016/j.scs.2020.102346 es_ES
dc.description.references Gallo, K., Hale, R., Tarpley, D., Yu, Y. 2011. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3), 767-775. https://doi.org/10.1175/2010JAMC2460.1 es_ES
dc.description.references García-Santos, V., Cuxart, J., Martínez-Villagrasa, D., Jiménez, M.A., Simó, G. 2018. Comparison of three methods for estimating land surface temperature from Landsat 8-TIRS Sensor data. Remote Sensing, 10(9), 1-13. https://doi.org/10.3390/rs10091450 es_ES
dc.description.references Gerace, A., Montanaro, M. 2017. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sensing of Environment, 191, 246-257. https://doi.org/10.1016/j.rse.2017.01.029 es_ES
dc.description.references Jiménez-Muñoz, J.C., Sobrino, J.A., Skoković, D., Mattar, C., Cristóbal, J. 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032 es_ES
dc.description.references Jin, M., Li, J., Wang, C., Shang, R. 2015. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China. Remote Sensing, 7(4), 4371-4390. https://doi.org/10.3390/rs70404371 es_ES
dc.description.references Kafer, P.S., Rolim, S.B.A., Iglesias, M.L., Da Rocha, N.S., Diaz, L.R. 2019. Land surface temperature retrieval by Landsat 8 thermal band: Applications of laboratory and field measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2332-2341. https://doi.org/10.1109/JSTARS.2019.2913822 es_ES
dc.description.references Keeratikasikorn, C., Bonafoni, S. 2018. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sensing, 10(3), 440. https://doi.org/10.3390/ rs10030440 es_ES
dc.description.references Keramitsoglou, I., Kiranoudis, C.T., Ceriola, G., Weng, Q., Rajasekar, U. 2011. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sensing of Environment, 115(12), 3080-3090. https://doi.org/10.1016/j.rse.2011.06.014 es_ES
dc.description.references Khalaf, A. 2018. Utilization of thermal bands of Landsat 8 data and geographic information system for analysis of urban heat island in Baghdad governorate 2016. MATEC Web of Conferences, 162, 1-5. https://doi.org/10.1051/matecconf/201816203026 es_ES
dc.description.references Lemus-Canovas, M., Martin-Vide, J., Moreno-Garcia, M.C., Lopez-Bustins, J.A. 2020. Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. Science of the Total Environment, 699, 134307. https://doi.org/10.1016/j.scitotenv.2019.134307 es_ES
dc.description.references Li, T., Meng, Q. 2018. A mixture emissivity analysis method for urban land surface temperature retrieval from Landsat 8 data. Landscape and Urban Planning, 179(July), 63-71. https://doi.org/10.1016/j.landurbplan.2018.07.010 es_ES
dc.description.references Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., Sobrino, J.A. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008 es_ES
dc.description.references Lin, W., Yu, T., Chang, X., Wu, W., Zhang, Y. 2015. Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66-75. https://doi. org/10.1016/j.landurbplan.2014.10.012 es_ES
dc.description.references Liu, L., Zhang, Y. 2011. Urban heat island analysis using the landsat TM data and ASTER Data: A case study in Hong Kong. Remote Sensing, 3(7), 1535-1552. https://doi.org/10.3390/rs3071535 es_ES
dc.description.references Macarof, P., Statescu, F. 2017. Comparasion of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environment and Sustainable Development, 11(2), 141-150. https://doi.org/10.1515/pesd-2017-0032 es_ES
dc.description.references Mao, K., Qin, Z., Shi, J., Gong, P. 2005. A practical split-window algorithm for retrieving land-surface temperature from MODIS data. International Journal of Remote Sensing, 26(15), 3181-3204. https://doi.org/10.1080/01431160500044713 es_ES
dc.description.references Meng, X., Cheng, J., Zhao, S., Liu, S., y Yao, Y. 2019. Estimating land surface temperature from Landsat-8 data using the NOAA JPSS enterprise algorithm. Remote Sensing, 11(2), 155. https://doi.org/10.3390/rs11020155 es_ES
dc.description.references Mukherjee, F., Singh, D. 2020. Assessing Land Use-Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment, 4(2), 385-407. https://doi.org/10.1007/s41748-020-00155-9 es_ES
dc.description.references Prata, A., Caselles, V., Coll, C., Sobrino, J.A., Ottlé, C. 1995. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote sensing reviews, 12(3-4), 175-224. https://doi.org/10.1080/02757259509532285 es_ES
dc.description.references Peres, L.F., Sobrino, J.A., Libonati, R., Jiménez Muñoz, J.C., Dacamara, C.C., Romaguera, M. 2008. Validation of a temperature emissivity separation hybrid method from airborne hyperspectral scanner data and ground measurements in the SEN2FLEX field campaign. International Journal of Remote Sensing, 29(24), 7251-7268. https://doi.org/10.1080/01431160802036532 es_ES
dc.description.references Qin, Z., Karnieli, A., Berliner, P. 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18), 3719-3746. https://doi.org/10.1080/01431160010006971 es_ES
dc.description.references Reuter, D.C., Richardson, C.M., Pellerano, F.A., Irons, J.R., Allen, R.G., Anderson, M., Jhabvala, M.D., Lunsford, A.W., Montanaro, M., Smith, R.L., Tesfaye, Z., Thome, K.J. 2015. The thermal infrared sensor (tirs) on Landsat 8: Design overview and pre-launch characterization. Remote Sensing, 7(1), 1135-1153. https://doi.org/10.3390/rs70101135 es_ES
dc.description.references Rongali, G., Keshari, A.K., Gosain, A.K., Khosa, R. 2018. A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: A case study of the beas river basin, India. Pertanika Journal of Science and Technology, 26(2), 829-840. https://doi.org/10.1007/s41651-018-0021-y es_ES
dc.description.references Rozenstein, O., Qin, Z., Derimian, Y., Karnieli, A. 2014. Derivation of land surface temperature for landsat-8 TIRS using a split window algorithm. Sensors (Switzerland), 14(4), 5768-5780. https://doi.org/10.3390/s140405768 es_ES
dc.description.references Saaroni, H., Amorim, J.H., Hiemstra, J.A., Pearlmutter, D. 2018. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24(October 2017), 94-110. https://doi.org/10.1016/j.uclim.2018.02.001 es_ES
dc.description.references Sabol, D.E., Gillespie, A.R., Abbott, E., Yamada, G. 2009. Field validation of the ASTER Temperature Emissivity Separation algorithm. Remote Sensing of Environment, 113(11), 2328-2344. https://doi. org/10.1016/j.rse.2009.06.008 es_ES
dc.description.references Sekertekin, A. 2019. Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using Landsat 8 Satellite Imagery and SURFRAD in-situ Measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 196(July), 105161. https://doi.org/10.1016/j.jastp.2019.105161 es_ES
dc.description.references Sekertekin, A., Bonafoni, S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294 es_ES
dc.description.references Sobrino, J.A., Raissouni, N. 2000. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International Journal of Remote Sensing, 21(2), 353-366. https://doi.org/10.1080/014311600210876 es_ES
dc.description.references Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., Martínez, P. 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316-327. https://doi.org/10.1109/TGRS.2007.904834 es_ES
dc.description.references Srivanit, M., Hokao, K., Phonekeo, V. 2012. Assessing the Impact of Urbanization on Urban Thermal Environment: A Case Study of Bangkok Metropolitan. International Journal of Applied Science and Technology, 2(7), 243-256. Recuperado de http://www.ijastnet.com/journals/Vol_2_No_7_ August_2012/26.pdf (Último acceso octubre 2020). es_ES
dc.description.references Srivastava, P.K., Majumdar, T.J., Bhattacharya, A.K. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43(10), 1563-1574. https://doi.org/10.1016/j.asr.2009.01.023 es_ES
dc.description.references Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., Eklundh, L. 2007. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment, 110(2), 262-274. https://doi.org/10.1016/j.rse.2007.02.025 es_ES
dc.description.references Tan, K., Liao, Z., Du, P., Wu, L. 2017. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network. Frontiers of Earth Science, 11(1), 20-34. https://doi.org/10.1007/s11707-016-0570-7 es_ES
dc.description.references Trigo, I.F., Monteiro, I.T., Olesen, F., Kabsch, E. 2008. An assessment of remotely sensed land surface temperature. Journal of Geophysical Research Atmospheres, 113(17), 1-12. https://doi. org/10.1029/2008JD010035 es_ES
dc.description.references USGS. 2017. Landsat 8 surface reflectance derived spectral indices. Versión 3.6. in: sioux falls, SD. es_ES
dc.description.references Wan, Z., Dozier. J. 1996. A generalized split window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 892-905. https://doi.org/10.1109/36.508406 es_ES
dc.description.references Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., Zhao, S. 2015a. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4), 4268-4289. https://doi.org/10.3390/rs70404268 es_ES
dc.description.references Wang, L., Lu, Y., Yao, Y. 2019. Comparison of three algorithms for the retrieval of land surface temperature from landsat 8 images. Sensors (Switzerland), 19(22), 5049. https://doi.org/10.3390/s19225049 es_ES
dc.description.references Wang, S., He, L., Hu, W. 2015b. A temperature and emissivity separation algorithm for landsat-8 thermal infrared sensor data. Remote Sensing, 7(8), 9904-9927. https://doi.org/10.3390/rs70809904 es_ES
dc.description.references Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., La Rosa, D. 2019. Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694, 133742. https://doi.org/10.1016/j.scitotenv.2019.133742 es_ES
dc.description.references Yang, C., Yan, F., Zhang, S. 2020. Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265(March), 110563. https://doi.org/10.1016/j.jenvman.2020.110563 es_ES
dc.description.references Yu, X., Guo, X., Wu, Z. 2014. Land surface temperature retrieval from landsat 8 TIRS comparison between radiative transfer equation based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829-9852. https://doi.org/10.3390/rs6109829 es_ES
dc.description.references Yu, Y., Liu, Y., Yu, P., Liu, Y., Yu, P. 2017. Land surface temperature product development for JPSS and GOES-R missions. Comprehensive Remote Sensing, 1-9, 284-303. https://doi.org/10.1016/B978-0-12- 409548-9.10522-6 es_ES
dc.description.references Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan, J., Li, J. 2013. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131(19), 119-139. https://doi.org/10.1016/j.rse.2012.12.014 es_ES
dc.description.references Zhang, Y., Chen, L., Wang, Y., Chen, L., Yao, F., Wu, P., Wang, B., Li, Y., Zhou, T., Zhang, T. 2015. Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sensing, 7(8), 10737-10762. https://doi.org/10.3390/rs70810737 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem