- -

Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hinojosa-Espinoza, Susana I. es_ES
dc.contributor.author Gallardo-Salazar, José L. es_ES
dc.contributor.author Hinojosa-Espinoza, Félix J. C. es_ES
dc.contributor.author Meléndez-Soto, Anulfo es_ES
dc.date.accessioned 2021-07-22T07:41:16Z
dc.date.available 2021-07-22T07:41:16Z
dc.date.issued 2021-07-21
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/169766
dc.description.abstract [EN] Unmanned Aerial Vehicles (UAVs) have given a new boost to remote sensing and image classification techniques due to the high level of detail among other factors. Object-based image analysis (OBIA) could improve classification accuracy unlike to pixel-based, especially in high-resolution images. OBIA application for image classification consists of three stages i.e., segmentation, class definition and training polygons, and classification. However, defining the parameters: spatial radius (SR), range radius (RR) and minimum region size (MR) is necessary during the segmentation stage. Despite their relevance, they are usually visually adjusted, which leads to a subjective interpretation. Therefore, it is of utmost importance to generate knowledge focused on evaluating combinations of these parameters. This study describes the use of the mean-shift segmentation algorithm followed by Random Forest classifier using Orfeo Toolbox software. It was considered a multispectral orthomosaic derived from UAV to generate a suburban map land cover in town of El Pueblito, Durango, Mexico. The main aim was to evaluate efficiency and segmentation quality of nine parameter combinations previously reported in scientific studies.This in terms of number generated polygons, processing time, discrepancy measures for segmentation and classification accuracy metrics. Results evidenced the importance of calibrating the input parameters in the segmentation algorithms. Best combination was RE=5, RR=7 and TMR=250, with a Kappa index of 0.90 and shortest processing time. On the other hand, RR showed a strong and inversely proportional degree of association regarding the classification accuracy metrics. es_ES
dc.description.abstract [ES] Los Vehículos Aéreos No Tripulados (VANT) han otorgado un nuevo auge a la teledetección y a las técnicas d clasificación de imágenes debido al alto nivel de detalle entre otros factores. El análisis de imágenes basado en objetos (OBIA) puede mejorar la precisión en la clasificación a diferencia de la basada en píxeles, especialmente en imágenes de alta resolución. La aplicación de OBIA para la clasificación de imágenes consta de tres etapas i.e., segmentación, definición de clases y polígonos de entrenamiento y clasificación. No obstante, en la etapa de segmentación es necesario definir los parámetros: radio espacial (RE), radio de rango (RR) y tamaño mínimo de la región (TMR). Los cuales, pese a su relevancia, suelen ser ajustados de manera visual, lo que conlleva a una interpretación subjetiva. Por lo anterior, es de suma importancia generar conocimiento enfocado a evaluar las combinaciones de estos parámetros. Este estudio describe el uso del algoritmo de segmentación de desplazamiento medio, seguido del clasificador Random Forest mediante el software Orfeo Toolbox. Se consideró un ortomosaico multiespectral derivado de VANT para generar un mapa de cobertura de suelo sub-urbano en la localidad El Pueblito, Durango, México. El objetivo principal fue evaluar la eficiencia y calidad de segmentación de nueve combinaciones de parámetros anteriormente reportadas en estudios científicos. Ello en términos de número de polígonos generados, tiempo de procesamiento, medidas de discrepancia de segmentación y métricas de precisión de la clasificación. Los resultados obtenidos lograron evidenciar la importancia de ajustar los parámetros de entrada en los algoritmos de segmentación. La mejor combinación fue RE=5, RR=7 y TMR=250, con un índice de Kappa de 0,90 y el menor tiempo de procesamiento. Por otro lado, el RR presentó  un grado de asociación fuerte e inversamente proporcional con las métricas de precisión de clasificación. es_ES
dc.description.sponsorship Se agradece al Consejo Nacional de Ciencia y Tecnología (Conacyt) por el financiamiento otorgado a la primera autora para la realización de sus estudios de maestría, así como al programa de Maestría en Geomática Aplicada a Recursos Forestales y Ambientales de la Facultad de Ciencias Forestales de la UJED. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Kappa index es_ES
dc.subject Mean-shift segmentation algorithm es_ES
dc.subject Object-based image analysis es_ES
dc.subject Random Forest es_ES
dc.subject Unmanned Aerial Vehicles es_ES
dc.subject Algoritmo de segmentación de desplazamiento medio es_ES
dc.subject Análisis de imágenes orientado a objetos es_ES
dc.subject Índice de Kappa es_ES
dc.subject Vehículos aéreos no tripulados es_ES
dc.title Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT es_ES
dc.title.alternative Evaluation of segmentation parameters in OBIA for classification of land covers from UAV images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2021.14782
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hinojosa-Espinoza, SI.; Gallardo-Salazar, JL.; Hinojosa-Espinoza, FJC.; Meléndez-Soto, A. (2021). Evaluación de parámetros de segmentación en OBIA para la clasificación de coberturas del suelo a partir de imágenes VANT. Revista de Teledetección. 0(58):89-103. https://doi.org/10.4995/raet.2021.14782 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2021.14782 es_ES
dc.description.upvformatpinicio 89 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 58 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\14782 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Abburu, S., Golla, S.B. 2015. Satellite image classification methods and techniques: A review. International Journal of Computer Applications, 119(8), 20-25. https://doi.org/10.5120/21088-3779 es_ES
dc.description.references Adelabu, S., Mutanga, O., Adam, E. 2015. Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto International, 30(7), 810-821. https://doi.org/10.1080/10106049.2014.997303 es_ES
dc.description.references Al-Najjar, H.A.H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A.A., Ueda, N., Mansor, S. 2019. Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461 es_ES
dc.description.references Apriyanto, D., Jaya, I.N., Puspaningsih, N. 2019. Examining the object-based and pixel-based image analyses for developing stand volume estimator model. Indonesian Journal of Electrical Engineering and Computer Science, 15(3), 1586-1596. https://doi.org/10.11591/ijeecs.v15.i3.pp1586-1596 es_ES
dc.description.references Ballari, D., Orellana, D., Acosta, E., Espinoza, A., Morocho, V. 2016. UAV monitoring for environmental management in Galapagos Islands. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 1105-1111. https://doi.org/10.5194/isprsarchives- XLI-B1-1105-2016 es_ES
dc.description.references Belgiu, M., Drǎguţ, L., Strobl, J. 2014. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 205-215. https://doi.org/10.1016/j.isprsjprs.2013.11.007 es_ES
dc.description.references Benarchid, O., Raissouni, N. 2014. Mean-shift Segmentation Parameters Estimator (MSPE): A new tool for Very High Spatial Resolution satellite images. International Conference on Multimedia Computing and Systems -Proceedings, 357-361. https://doi.org/10.1109/ICMCS.2014.6911184 es_ES
dc.description.references Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16. https://doi.org/10.1016/j.isprsjprs.2009.06.004 es_ES
dc.description.references Brooke, C., Clutterbuck, B. 2020. Mapping Heterogeneous Buried Archaeological Features Using Multisensor Data from Unmanned Aerial Vehicles. Remote Sensing, 12(1), 41. https://doi.org/10.3390/rs12010041 es_ES
dc.description.references Burdziakowski, P. 2017. Evaluation of Open Drone Map Toolkit for Geodetic Grade Aerial Drone Mapping- Case Study. En: Proceedings International Multidisciplinary Scientific GeoConference-SGEM 2017, Gdańska, Polonia. 29 Junio-5 Julio. pp. 101-110. https://doi.org/10.5593/sgem2017/23/S10.013 es_ES
dc.description.references Carvajal-Ramírez, F., Marques da Silva, J.R., Agüera- Vega, F., Martínez-Carricondo, P., Serrano, J., Moral, F.J. 2019. Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV. Remote Sensing, 11(9), 993. https://doi.org/10.3390/rs11090993 es_ES
dc.description.references Chuvieco, E. 2020. Revisión histórica y perspectivas de futuro de la Teledetección: desde el ERTS hasta los Sentinels. Mapping, 29(200), 30-32. es_ES
dc.description.references Colomina, I., Molina, P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92(2014), 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013 es_ES
dc.description.references Comert, R., Avdan, U., Gorum, T., Nefeslioglu, H.A. 2019. Mapping of shallow landslides with object- based image analysis from unmanned aerial vehicle data. Engineering Geology, 260(2019), 105264. https://doi.org/10.1016/j.enggeo.2019.105264 es_ES
dc.description.references Congalton, R.G., Mead, R.A. 1983. A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing, 49(1), 69-74. es_ES
dc.description.references Congalton, R.G., Green, K. 2009. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Second CRC Press Taylor & Francis Group: Boca Raton, FL, USA, Volume 48. https://doi.org/10.1201/9781420055139 es_ES
dc.description.references Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J. 2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792. https://doi.org/10.1890/07-0539.1 es_ES
dc.description.references Dash, J.P., Pearse, G.D., Watt, M.S. 2018. UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health. Remote Sensing, 10(8), 1216. https://doi.org/10.3390/rs10081216 es_ES
dc.description.references Dash, J.P., Watt, M.S., Pearse, G.D., Heaphy, M., Dungey, H.S. 2017. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131(2017), 1-14. https://doi.org/10.1016/j.isprsjprs.2017.07.007 es_ES
dc.description.references De Castro, A.I., Torres-Sánchez, J., Peña, J.M., Jiménez- Brenes, F.M., Csillik, O., López-Granados, F. 2018. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sensing, 10(2), 285. https://doi.org/10.3390/rs10020285 es_ES
dc.description.references De Luca, G., N. Silva, J.M., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., Modica, G. 2019. Object-Based Land Cover Classification of Cork Oak Woodlands using UAV Imagery and Orfeo ToolBox. Remote Sensing, 11(10), 1238. https://doi.org/10.3390/rs11101238 es_ES
dc.description.references Dhingra, S., Kumar, D. 2019. A review of remotely sensed satellite image classification. International Journal of Electrical & Computer Engineering, 9(3), 1720-1731. https://doi.org/10.11591/ijece.v9i3.pp1720-1731 es_ES
dc.description.references Dongping M., Tianyu C., Hongyue., Longxiang L., Cheng Q., Jinyang D., 2012. Semivariogram-Based Spatial Bandwidth Selection for Remote Sensing Image Segmentation With Mean-Shift Algorithm. IEEE Geoscience and Remote Sensing Letters, 9(5), 813-817. https://doi.org/10.1109/lgrs.2011.2182604 es_ES
dc.description.references Enderle, D.I.M., Weih Jr, R.C. 2005. Integrating supervised and unsupervised classification methods to develop a more accurate land cover classification. Journal of the Arkansas Academy of Science, 59(1), 65-73. es_ES
dc.description.references Farfaglia, S., Lollino, G., Iaquinta, M., Sale, I., Catella, P., Martino, M., Chiesa, S. 2015. The use of UAV to monitor and manage the territory: perspectives from the SMAT project. En Engineering Geology for Society and Territory- Volume 5 (pp. 691-695). Springer, Cham. https://doi.org/10.1007/978-3-319-09048-1_134 es_ES
dc.description.references Feng, Q., Liu, J., Gong, J. 2015. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sensing, 7(1), 1074-1094. https://doi.org/10.3390/rs70101074 es_ES
dc.description.references Gallardo-Salazar, J., Pompa-García, M., Aguirre- Salado, C., López-Serrano, P., Meléndez-Soto, A. 2020. Drones: tecnología con futuro promisorio en la gestión forestal. Revista Mexicana de Ciencias Forestales, 11(61), 28-50. https://doi.org/10.29298/ rmcf.v11i61.794 es_ES
dc.description.references Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pižurica, A., He, Y., Pieters, J.G. 2018. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 67(2018), 43-53. https://doi. org/10.1016/j.jag.2017.12.012 es_ES
dc.description.references Geneletti, D., Gorte, B.G.H. 2003. A method for object- oriented land cover classification combining Landsat TM data and aerial photographs. International Journal of Remote Sensing, 24(6), 1273-1286. https://doi.org/10.1080/01431160210144499 es_ES
dc.description.references Hasmadi, M., Pakhriazad, H.Z., Shahrin, M.F. 2009. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia: Malaysian Journal of Society and Space, 5(1), 1-10. es_ES
dc.description.references Hossain, M.D., Chen, D. 2019. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150(2019), 115-134. https://doi. org/10.1016/j.isprsjprs.2019.02.009 es_ES
dc.description.references Immitzer, M., Vuolo, F., Atzberger, C. 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/ rs8030166 es_ES
dc.description.references Inzunza-López, J.O., López-Ariza, B., Valdez-Cepeda, R.D., Mendoza, B., Sánchez-Cohen, I., García- Herrera, G. 2011. La variación de las temperaturas extremas en la 'Comarca Lagunera' y cercanías. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2011), 45-61. https://doi.org/10.5154/r. rchscfa.2010.09.071 es_ES
dc.description.references Jain, M., Tomar, P.S. 2013. Review of image classification methods and techniques. International Journal of Engineering Research and Technology, 2(8), 852-858. es_ES
dc.description.references Jara, C., Delegido, J., Ayala, J., Lozano, P., Armas, A., Flores, V. 2019. Estudio de bofedales en los Andes ecuatorianos a través de la comparación de imágenes Landsat-8 y Sentinel-2. Revista de Teledetección, 53(2019), 45-57. https://doi.org/10.4995/ raet.2019.11715 es_ES
dc.description.references Kakooei, M., Baleghi, Y. 2017. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. International Journal of Remote Sensing, 38(8-10), 2511-2534. https://doi.org/10.1080/01431161.2017.1294780 es_ES
dc.description.references Khatami, R., Mountrakis, G., Stehman, S.V. 2016. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177(2016), 89-100. https://doi.org/10.1016/j.rse.2016.02.028 es_ES
dc.description.references Langhammer, J., Vacková, T. 2018. Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry. Pure and Applied Geophysics, 175(9), 3223-3245. https://doi.org/10.1007/s00024-018-1874-1 es_ES
dc.description.references Li, M., Ma, L., Blaschke, T., Cheng, L., Tiede, D. 2016. A systematic comparison of different object- based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observation and Geoinformation, 49(2016), 87-98. https://doi. org/10.1016/j.jag.2016.01.011 es_ES
dc.description.references Li, M., Zang, S., Zhang, B., Li, S., Wu, C. 2014. AReview of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information. European Journal of Remote Sensing, 47(1), 389-411. https:// doi.org/10.5721/EuJRS20144723 es_ES
dc.description.references Li, S., Tang, H., Huang, X., Mao, T., Niu, X. 2017. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters. Remote Sensing, 9(11), 1177. https://doi.org/10.3390/rs9111177 es_ES
dc.description.references Liu, Y., Biana, L., Menga, Y., Wanga, H., Zhanga, S., Yanga, Y., Shaoa, X., Wang, B., 2012. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 68(2012), 144-156. https://doi.org/10.1016/j.isprsjprs.2012.01.007 es_ES
dc.description.references Lu, D., Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456 es_ES
dc.description.references Lyons, M.B., Keith, D.A., Phinn, S.R., Mason, T.J., Elith, J. 2018. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208(2018), 145-153. https://doi.org/10.1016/j. rse.2018.02.026 es_ES
dc.description.references Ma, L., Cheng, L., Li, M., Liu, Y., Ma, X. 2015. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 102(2015), 14-27. https://doi.org/10.1016/j. isprsjprs.2014.12.026 es_ES
dc.description.references Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y. 2017. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130(2017), 277-293. https://doi.org/10.1016/j.isprsjprs.2017.06.001 es_ES
dc.description.references Mafanya, M., Tsele, P., Botai, J., Manyama, P., Swart, B., Monate, T. 2017. Evaluating pixel and object based image classification techniques for mapping plant invasions from UAV derived aerial imagery: Harrisia pomanensis as a case study. ISPRS Journal of Photogrammetry and Remote Sensing, 129(2017), 1-11. https://doi.org/10.1016/j.isprsjprs.2017.04.009 es_ES
dc.description.references Mangiameli, M., Mussumeci, G., Candiano, A. 2018. A low cost methodology for multispectral image classification. En Computational Science and Its Applications-ICCSA 2018 (pp. 263-280). Springer, Cham. https://doi.org/10.1007/978-3-319-95174- 4_22 es_ES
dc.description.references Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R., Gioli, B. 2015. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sensing, 7(3), 2971-2990. https://doi.org/10.3390/ rs70302971 es_ES
dc.description.references Michel, J., Youssefi, D., Grizonnet, M. 2015. Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 952-964. https://doi. org/10.1109/TGRS.2014.2330857 es_ES
dc.description.references Monserud, R.A., Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275-293. https://doi.org/10.1016/0304-3800(92)90003-W es_ES
dc.description.references Nenmaoui, A., Torres, M.Á.A., Novelli, A., Marín, M.C.V., Torres, F.J.A., Betlej, M., Cichón, P. 2017. Mapeado de invernaderos mediante teledetección orientada a objetos: relación entre la calidad de la segmentación y precisión de la clasificación. Revista Mapping, 26(181), 4-13. ISSN: 1131-9100 es_ES
dc.description.references Raissouni, N., Benarchid, O., Sobrino, J., Ayyan, A. 2015. Aplicación del Estimador de Parámetros de Segmentación por Media-desplazada (EPSM) a las imágenes de satélite de muy alta resolución espacial: Tetuán (Marruecos). Revista de Teledetección, 43(2015), 91-96. https://doi.org/10.4995/ raet.2015.3511 es_ES
dc.description.references Ramadhan Kete, S.C., Suprihatin, Tarigan, S.D., Effendi, H. 2019. Land use classification based on object and pixel using Landsat 8 OLI in Kendari City, Southeast Sulawesi Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 284(2019), 012019. https://doi.org/10.1088/1755-1315/284/1/012019 es_ES
dc.description.references Rosenfield, G.H., Fitzpatrick-Lins, K. 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52(2), 223-227. es_ES
dc.description.references Sideris, K., Colson, D., Lightfoot, P., Heeley, L., Robinson, P. 2020. Review of image segmentation algorithms for analysing Sentinel-2 data over large geographical areas. JNCC Report No. 655. Peterborough, ISSN 0963-8091. es_ES
dc.description.references Silalahi, R., Jaya, I.N., Tiryana, T., Mulia, F. 2018. Assessing the Crown Closure of Nypa on UAV Images using Mean-Shift Segmentation Algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 9(3), 722-730. https://doi.org/10.11591/ijeecs.v9.i3.pp722-730 es_ES
dc.description.references Smits, P.C., Dellepiane, S.G., Schowengerdt, R.A. 1999. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20(8), 1461-1486. https://doi.org/10.1080/014311699212560 es_ES
dc.description.references Teodoro, A.C., Araujo, R. 2014. Exploration of the OBIA methods available in SPRING non- commercial software to UAV data processing. En: Proceedings SPIE 9245, Earth Resources and Environmental Remote Sensing/GIS Applications. https://doi.org/10.1117/12.2066468 es_ES
dc.description.references V. Amsterdam, Netherlands, 10 de Octubre. https://doi.org/10.1117/12.2066468 es_ES
dc.description.references Teodoro, A.C., Araujo, R. 2016. Comparison of performance of object-based image analysis techniques available in open source software (Spring and Orfeo Toolbox/Monteverdi) considering very high spatial resolution data. Journal of Applied Remote Sensing, 10(1), 1-22. https://doi.org/10.1117/1.JRS.10.016011 es_ES
dc.description.references Torres-Sánchez, J., López-Granados, F., Peña, J.M. 2015. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114(2015), 43-52. https://doi.org/10.1016/j.compag.2015.03.019 es_ES
dc.description.references Trisasongko, B.H., Panuju, D.R., Paull, D.J., Jia, X., Griffin, A.L. 2017. Comparing six pixel-wise classifiers for tropical rural land cover mapping using four forms of fully polarimetric SAR data. International Journal of Remote Sensing, 38(11), 3274-3293. https://doi.org/10.1080/01431161.2017.1292072 es_ES
dc.description.references Villanueva Díaz, J., Stahle, D.W., Cerano Paredes, J., Estrada Ávalos, J., Constante García, V. 2013. Respuesta hidrológica del sabino en bosques de galería del Río San Pedro Mezquital, Durango. Revista Mexicana de Ciencias Forestales, 4(20), 9-19. https://doi.org/10.29298/rmcf.v4i20.366 es_ES
dc.description.references Vu, T.T. 2012. Object-based remote sensing image analysis with OSGeo tools. En: Proceedings FOSS4G Southeast Asia 2012, Johor Bahru, Malaysia. 18-19 Julio. pp. 79-84. es_ES
dc.description.references Ye, S., Pontius, R.G., Rakshit, R. 2018. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 141(2018), 137-147. https://doi.org/10.1016/j. isprsjprs.2018.04.002 es_ES
dc.description.references Zaraza-Aguilera, M.A., Manrique-Chacón, L.M. 2019. Generación de datos de cambio de coberturas vegetales en la sabana de Bogotá mediante el uso de series temporales con imágenes Landsat e imágenes sintéticas MODIS-Landsat entre los años 2007 y 2013. Revista de Teledetección, 54(2019), 41-58.https://doi.org/10.4995/raet.2019.12280 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem