Mostrar el registro sencillo del ítem
dc.contributor.author | del Campo, Ricardo![]() |
es_ES |
dc.contributor.author | Fernández, Antonio![]() |
es_ES |
dc.contributor.author | Mayoral, Fernando![]() |
es_ES |
dc.contributor.author | Naranjo, Francisco![]() |
es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso![]() |
es_ES |
dc.date.accessioned | 2021-07-23T03:30:52Z | |
dc.date.available | 2021-07-23T03:30:52Z | |
dc.date.issued | 2020-11-01 | es_ES |
dc.identifier.issn | 0022-247X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169894 | |
dc.description.abstract | [EN] We study the equivalence between the Orlicz and Luxemburg (quasi-) norms in the context of the generalized Orlicz spaces associated to an N-function Phi and a (quasi-) Banach function space X over a positive finite measure mu. We show that the Orlicz and the Luxemburg spaces do not coincide in general, and also that under mild requirements (sigma-Fatou property, strictly monotone renorming) the coincidence holds. We use as a technical tool the classes L-omega(Phi)(m), L-Phi(m) and L-Phi(parallel to m parallel to) of Orlicz spaces of scalar integrable functions with respect to a Banachspace-valued countably additive vector measure m, providing also some new results on these spaces. (C) 2020 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | This research has been partially supported by La Junta de Andalucia (Spain) under the grant FQM-133. The fifth author gratefully acknowledges the support of the Ministerio de Ciencia, Innovacion y Universidades (Spain) and FEDER under grant MTM2016-77054-C2-1-P2. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Banach function space | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject | Orlicz space | es_ES |
dc.subject | Orlicz norm | es_ES |
dc.subject | Luxemburg norm | es_ES |
dc.subject | Strictly monotone norm | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | When and where the Orlicz and Luxemburg (quasi-) norms are equivalent? | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmaa.2020.124302 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//FQM-133/ES/Grupo De Investigación En Análisis Funcional/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Del Campo, R.; Fernández, A.; Mayoral, F.; Naranjo, F.; Sánchez Pérez, EA. (2020). When and where the Orlicz and Luxemburg (quasi-) norms are equivalent?. Journal of Mathematical Analysis and Applications. 491(1):1-18. https://doi.org/10.1016/j.jmaa.2020.124302 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmaa.2020.124302 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 491 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\424063 | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Del Campo, R., Fernández, A., Ferrando, I., Mayoral, F., & Naranjo, F. (2008). Multiplication operators on spaces of integrable functions with respect to a vector measure. Journal of Mathematical Analysis and Applications, 343(1), 514-524. doi:10.1016/j.jmaa.2008.01.080 | es_ES |
dc.description.references | Del Campo, R., Fernández, A., Mayoral, F., & Naranjo, F. (2016). Reflexivity of function spaces associated to a σ-finite vector measure. Journal of Mathematical Analysis and Applications, 438(1), 339-350. doi:10.1016/j.jmaa.2016.01.076 | es_ES |
dc.description.references | Del Campo, R., Fernández, A., Mayoral, F., & Naranjo, F. (2019). The de la Vallée-Poussin theorem and Orlicz spaces associated to a vector measure. Journal of Mathematical Analysis and Applications, 470(1), 279-291. doi:10.1016/j.jmaa.2018.10.001 | es_ES |
dc.description.references | Delgado, O. (2004). Banach function subspaces of L1 of a vector measure and related Orlicz spaces. Indagationes Mathematicae, 15(4), 485-495. doi:10.1016/s0019-3577(05)00004-2 | es_ES |
dc.description.references | Ferrando, I., & Galaz-Fontes, F. (2009). Multiplication operators on vector measure Orlicz spaces. Indagationes Mathematicae, 20(1), 57-71. doi:10.1016/s0019-3577(09)80003-7 | es_ES |
dc.description.references | Jain, P., Persson, L. E., & Upreti, P. (2007). Inequalities and properties of some generalized Orlicz classes and spaces. Acta Mathematica Hungarica, 117(1-2), 161-174. doi:10.1007/s10474-007-6083-9 | es_ES |
dc.description.references | Kalton, N. J. (1984). Convexity conditions for non-locally convex lattices. Glasgow Mathematical Journal, 25(2), 141-152. doi:10.1017/s0017089500005553 | es_ES |
dc.description.references | Lewis, D. R. (1972). On integrability and summability in vector spaces. Illinois Journal of Mathematics, 16(2). doi:10.1215/ijm/1256052286 | es_ES |
dc.description.references | Moore, L. (1971). Strictly increasing Riesz norms. Pacific Journal of Mathematics, 37(1), 171-180. doi:10.2140/pjm.1971.37.171 | es_ES |
dc.description.references | Roy, S. K., & Chakraborty, N. D. (1986). Orlicz spaces for a family of measures. Analysis Mathematica, 12(3), 229-235. doi:10.1007/bf01907709 | es_ES |
dc.description.references | Schep, A. R. (2009). Products and factors of Banach function spaces. Positivity, 14(2), 301-319. doi:10.1007/s11117-009-0019-2 | es_ES |