- -

Time to exploit phenotypic plasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Time to exploit phenotypic plasticity

Mostrar el registro completo del ítem

Monforte Gilabert, AJ. (2020). Time to exploit phenotypic plasticity. Journal of Experimental Botany. 71(18):5295-5297. https://doi.org/10.1093/jxb/eraa268

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169897

Ficheros en el ítem

Metadatos del ítem

Título: Time to exploit phenotypic plasticity
Autor: Monforte Gilabert, Antonio José
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] The study of plant phenotypic plasticity complements our knowledge of plant response to stresses obtained from controlled single and multiple stress experiments. Diouf et al. (2020) dissect the genetic control of ...[+]
Palabras clave: Adaptation , Breeding , Climate change , Genotypexenvironment , Multiple stress
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/eraa268
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/jxb/eraa268
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097665-B-C22/ES/BASES GENETICAS DE LA MORFOLOGIA DEL FRUTO EN MELON COMO CONSECUENCIA DE LA DOMESTICACION Y LA DIVERSIFICACION Y CARACTERIZACION DE BARRERAS REPRODUCTIVAS INTERESPECIFICAS EN/
Agradecimientos:
Research in my laboratory is kindly funded by the Spanish Ministry of Science, Innovation and University and FEDER, grant RTI2018-097665-B-C22 and the European Commission 510 H2020 research and innovation programme through ...[+]
Tipo: Artículo

References

Arnold, P. A., Kruuk, L. E. B., & Nicotra, A. B. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 222(3), 1235-1241. doi:10.1111/nph.15656

Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720

Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66(1), 487-511. doi:10.1146/annurev-arplant-050213-040012 [+]
Arnold, P. A., Kruuk, L. E. B., & Nicotra, A. B. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 222(3), 1235-1241. doi:10.1111/nph.15656

Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720

Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66(1), 487-511. doi:10.1146/annurev-arplant-050213-040012

Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., & Causse, M. (2020). Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 71(18), 5365-5376. doi:10.1093/jxb/eraa265

Gage, J. L., Jarquin, D., Romay, C., Lorenz, A., Buckler, E. S., Kaeppler, S., … de Leon, N. (2017). The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 8(1). doi:10.1038/s41467-017-01450-2

Ganie, S. A., Molla, K. A., Henry, R. J., Bhat, K. V., & Mondal, T. K. (2019). Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 132(4), 851-870. doi:10.1007/s00122-019-03301-8

Gerszberg, A., & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83(2), 175-198. doi:10.1007/s10725-017-0251-x

He, M., He, C.-Q., & Ding, N.-Z. (2018). Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01771

Kusmec, A., de Leon, N., & Schnable, P. S. (2018). Harnessing Phenotypic Plasticity to Improve Maize Yields. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01377

Mangin, B., Casadebaig, P., Cadic, E., Blanchet, N., Boniface, M.-C., Carrère, S., … Langlade, N. B. (2017). Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant, Cell & Environment, 40(10), 2276-2291. doi:10.1111/pce.12961

Morton, M. J. L., Awlia, M., Al‐Tamimi, N., Saade, S., Pailles, Y., Negrão, S., & Tester, M. (2019). Salt stress under the scalpel – dissecting the genetics of salt tolerance. The Plant Journal, 97(1), 148-163. doi:10.1111/tpj.14189

Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43. doi:10.1111/nph.12797

Wu, W., Ma, B., & Whalen, J. K. (2018). Enhancing Rapeseed Tolerance to Heat and Drought Stresses in a Changing Climate: Perspectives for Stress Adaptation from Root System Architecture. Advances in Agronomy, 87-157. doi:10.1016/bs.agron.2018.05.002

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2017). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12. doi:10.1111/ppl.12540

Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., … Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1-2), 249-261.e12. doi:10.1016/j.cell.2017.12.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem