- -

Time to exploit phenotypic plasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Time to exploit phenotypic plasticity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.date.accessioned 2021-07-23T03:31:07Z
dc.date.available 2021-07-23T03:31:07Z
dc.date.issued 2020-09-19 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169897
dc.description.abstract [EN] The study of plant phenotypic plasticity complements our knowledge of plant response to stresses obtained from controlled single and multiple stress experiments. Diouf et al. (2020) dissect the genetic control of phenotypic plasticity for several traits in tomato. A few loci control both plasticity and mean phenotypes, while most loci are associated only with plasticity or mean phenotypes. The results can be applied to develop new cultivars for different objectives, from stable behavior to those specifically-adapted to different environments, by combining loci with different contributions to plasticity or mean phenotype. es_ES
dc.description.sponsorship Research in my laboratory is kindly funded by the Spanish Ministry of Science, Innovation and University and FEDER, grant RTI2018-097665-B-C22 and the European Commission 510 H2020 research and innovation programme through the TOMGEM project agreement no. 679796. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Adaptation es_ES
dc.subject Breeding es_ES
dc.subject Climate change es_ES
dc.subject Genotypexenvironment es_ES
dc.subject Multiple stress es_ES
dc.title Time to exploit phenotypic plasticity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/eraa268 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097665-B-C22/ES/BASES GENETICAS DE LA MORFOLOGIA DEL FRUTO EN MELON COMO CONSECUENCIA DE LA DOMESTICACION Y LA DIVERSIFICACION Y CARACTERIZACION DE BARRERAS REPRODUCTIVAS INTERESPECIFICAS EN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Monforte Gilabert, AJ. (2020). Time to exploit phenotypic plasticity. Journal of Experimental Botany. 71(18):5295-5297. https://doi.org/10.1093/jxb/eraa268 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jxb/eraa268 es_ES
dc.description.upvformatpinicio 5295 es_ES
dc.description.upvformatpfin 5297 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 18 es_ES
dc.identifier.pmid 32949243 es_ES
dc.identifier.pmcid PMC7501808 es_ES
dc.relation.pasarela S\433424 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Arnold, P. A., Kruuk, L. E. B., & Nicotra, A. B. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 222(3), 1235-1241. doi:10.1111/nph.15656 es_ES
dc.description.references Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720 es_ES
dc.description.references Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66(1), 487-511. doi:10.1146/annurev-arplant-050213-040012 es_ES
dc.description.references Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., & Causse, M. (2020). Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 71(18), 5365-5376. doi:10.1093/jxb/eraa265 es_ES
dc.description.references Gage, J. L., Jarquin, D., Romay, C., Lorenz, A., Buckler, E. S., Kaeppler, S., … de Leon, N. (2017). The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 8(1). doi:10.1038/s41467-017-01450-2 es_ES
dc.description.references Ganie, S. A., Molla, K. A., Henry, R. J., Bhat, K. V., & Mondal, T. K. (2019). Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 132(4), 851-870. doi:10.1007/s00122-019-03301-8 es_ES
dc.description.references Gerszberg, A., & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83(2), 175-198. doi:10.1007/s10725-017-0251-x es_ES
dc.description.references He, M., He, C.-Q., & Ding, N.-Z. (2018). Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01771 es_ES
dc.description.references Kusmec, A., de Leon, N., & Schnable, P. S. (2018). Harnessing Phenotypic Plasticity to Improve Maize Yields. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01377 es_ES
dc.description.references Mangin, B., Casadebaig, P., Cadic, E., Blanchet, N., Boniface, M.-C., Carrère, S., … Langlade, N. B. (2017). Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plant, Cell & Environment, 40(10), 2276-2291. doi:10.1111/pce.12961 es_ES
dc.description.references Morton, M. J. L., Awlia, M., Al‐Tamimi, N., Saade, S., Pailles, Y., Negrão, S., & Tester, M. (2019). Salt stress under the scalpel – dissecting the genetics of salt tolerance. The Plant Journal, 97(1), 148-163. doi:10.1111/tpj.14189 es_ES
dc.description.references Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282 es_ES
dc.description.references Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43. doi:10.1111/nph.12797 es_ES
dc.description.references Wu, W., Ma, B., & Whalen, J. K. (2018). Enhancing Rapeseed Tolerance to Heat and Drought Stresses in a Changing Climate: Perspectives for Stress Adaptation from Root System Architecture. Advances in Agronomy, 87-157. doi:10.1016/bs.agron.2018.05.002 es_ES
dc.description.references Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2017). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12. doi:10.1111/ppl.12540 es_ES
dc.description.references Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., … Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1-2), 249-261.e12. doi:10.1016/j.cell.2017.12.019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem