dc.contributor.author |
Carrillo-Abad, Jordi
|
es_ES |
dc.contributor.author |
Mora-Gómez, Julia
|
es_ES |
dc.contributor.author |
García Gabaldón, Montserrat
|
es_ES |
dc.contributor.author |
Mestre, S.
|
es_ES |
dc.contributor.author |
Pérez-Herranz, Valentín
|
es_ES |
dc.date.accessioned |
2021-07-23T03:31:13Z |
|
dc.date.available |
2021-07-23T03:31:13Z |
|
dc.date.issued |
2020-08-15 |
es_ES |
dc.identifier.issn |
0301-4797 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/169900 |
|
dc.description.abstract |
[EN] The electrochemical oxidation of the antibiotic Norfloxacin (NOR) in chloride media on different anodic materials was studied at two different electrochemical reactors. The results were compared with those obtained in sulphate media. The anodes under study were a commercial boron-doped diamond (BBD) and two different ceramic electrodes based on tin oxide doped with antimony oxide in the presence (CuO) and absence (BCE) of copper oxide as sintering aid. The reactors employed were a one-compartment reactor (OCR) and a two-compartment one with a membrane separating both electrodes (EMR). The use of the membrane clearly enhanced both NOR degradation and TOC mineralization for all the anodic materials studied since some parallel reactions were avoided. Additionally, two different pathways for NOR oxidation were observed as a function of the reactor employed. The EMR also favoured the ionic by-products generation and the electrolyte dechlorination. NO3¿ increased with the oxidation power of the anode employed and it was also enhanced by the EMR use. Chloride media favours ceramic electrodes performance independently of the reactor employed as they did not generate an excess of oxidants as BDD did. The BCE electrode is an interesting alternative to BDD since although its oxidative power was lower, it presented similar current efficiency with lower energy consumption. |
es_ES |
dc.description.sponsorship |
The authors want to express their gratitude to the Ministerio de Economia y Competitividad (Spain) and the FEDER funds, which financially support the project RTI2018-101341-B-C21. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Journal of Environmental Management |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Norfloxacin (NOR) |
es_ES |
dc.subject |
Boron-doped diamond (BDD) anode |
es_ES |
dc.subject |
Ceramic anodes |
es_ES |
dc.subject |
Electro-oxidation |
es_ES |
dc.subject |
Electrochemical membrane reactor |
es_ES |
dc.subject.classification |
INGENIERIA QUIMICA |
es_ES |
dc.title |
Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.jenvman.2020.110710 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101341-B-C21/ES/ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear |
es_ES |
dc.description.bibliographicCitation |
Carrillo-Abad, J.; Mora-Gómez, J.; García Gabaldón, M.; Mestre, S.; Pérez-Herranz, V. (2020). Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes. Journal of Environmental Management. 268:1-9. https://doi.org/10.1016/j.jenvman.2020.110710 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.jenvman.2020.110710 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
9 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
268 |
es_ES |
dc.identifier.pmid |
32510444 |
es_ES |
dc.relation.pasarela |
S\417901 |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570-6631. doi:10.1021/cr900136g |
es_ES |
dc.description.references |
Dodd, M. C., Shah, A. D., von Gunten, U., & Huang, C.-H. (2005). Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine: Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Technology, 39(18), 7065-7076. doi:10.1021/es050054e |
es_ES |
dc.description.references |
Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035 |
es_ES |
dc.description.references |
Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003 |
es_ES |
dc.description.references |
Coledam, D. A. C., Sánchez-Montes, I., Silva, B. F., & Aquino, J. M. (2018). On the performance of HOCl/Fe2+, HOCl/Fe2+/UVA, and HOCl/UVC processes using in situ electrogenerated active chlorine to mineralize the herbicide picloram. Applied Catalysis B: Environmental, 227, 170-177. doi:10.1016/j.apcatb.2017.12.072 |
es_ES |
dc.description.references |
Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere, 210, 615-623. doi:10.1016/j.chemosphere.2018.07.057 |
es_ES |
dc.description.references |
Ghernaout, D., Naceur, M. W., & Aouabed, A. (2011). On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination, 270(1-3), 9-22. doi:10.1016/j.desal.2011.01.010 |
es_ES |
dc.description.references |
Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55(6), 2101-2115. doi:10.1016/j.electacta.2009.11.040 |
es_ES |
dc.description.references |
Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. doi:10.1016/j.jhazmat.2014.05.076 |
es_ES |
dc.description.references |
Huang, K.-J., Liu, X., Xie, W.-Z., & Yuan, H.-X. (2008). Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids and Surfaces B: Biointerfaces, 64(2), 269-274. doi:10.1016/j.colsurfb.2008.02.003 |
es_ES |
dc.description.references |
Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E., & Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of The Total Environment, 575, 1228-1238. doi:10.1016/j.scitotenv.2016.09.201 |
es_ES |
dc.description.references |
Liu, C., Nanaboina, V., Korshin, G. V., & Jiang, W. (2012). Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Research, 46(16), 5235-5246. doi:10.1016/j.watres.2012.07.005 |
es_ES |
dc.description.references |
Ma, X., Cheng, Y., Ge, Y., Wu, H., Li, Q., Gao, N., & Deng, J. (2018). Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrasonics Sonochemistry, 40, 763-772. doi:10.1016/j.ultsonch.2017.08.025 |
es_ES |
dc.description.references |
Madsen, H. T., Søgaard, E. G., & Muff, J. (2015). Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes. Chemosphere, 120, 756-763. doi:10.1016/j.chemosphere.2014.10.058 |
es_ES |
dc.description.references |
Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62-71. doi:10.1016/j.coelec.2018.07.010 |
es_ES |
dc.description.references |
Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017 |
es_ES |
dc.description.references |
Mora-Gómez, J., García-Gabaldón, M., Carrillo-Abad, J., Montañés, M. T., Mestre, S., & Pérez-Herranz, V. (2020). Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes. Separation and Purification Technology, 241, 116684. doi:10.1016/j.seppur.2020.116684 |
es_ES |
dc.description.references |
Murugananthan, M., Latha, S. S., Bhaskar Raju, G., & Yoshihara, S. (2011). Role of electrolyte on anodic mineralization of atenolol at boron doped diamond and Pt electrodes. Separation and Purification Technology, 79(1), 56-62. doi:10.1016/j.seppur.2011.03.011 |
es_ES |
dc.description.references |
Neugebauer, U., Szeghalmi, A., Schmitt, M., Kiefer, W., Popp, J., & Holzgrabe, U. (2005). Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1505-1517. doi:10.1016/j.saa.2004.11.014 |
es_ES |
dc.description.references |
Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105 |
es_ES |
dc.description.references |
Sánchez-Montes, I., Fuzer Neto, J. R., Silva, B. F., Silva, A. J., Aquino, J. M., & Rocha-Filho, R. C. (2018). Evolution of the antibacterial activity and oxidation intermediates during the electrochemical degradation of norfloxacin in a flow cell with a PTFE-doped β-PbO2 anode: Critical comparison to a BDD anode. Electrochimica Acta, 284, 260-270. doi:10.1016/j.electacta.2018.07.122 |
es_ES |
dc.description.references |
Urtiaga, A., Soriano, A., & Carrillo-Abad, J. (2018). BDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formation. Chemosphere, 201, 571-577. doi:10.1016/j.chemosphere.2018.03.027 |
es_ES |
dc.description.references |
Wang, Y., Shen, C., Zhang, M., Zhang, B.-T., & Yu, Y.-G. (2016). The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chemical Engineering Journal, 296, 79-89. doi:10.1016/j.cej.2016.03.093 |
es_ES |
dc.description.references |
Woodward, R. B. (1942). Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. Journal of the American Chemical Society, 64(1), 76-77. doi:10.1021/ja01253a019 |
es_ES |
dc.description.references |
Woodward, R. B. (1942). Structure and Absorption Spectra. III. Normal Conjugated Dienes. Journal of the American Chemical Society, 64(1), 72-75. doi:10.1021/ja01253a018 |
es_ES |
dc.description.references |
Woodward, R. B., & Clifford, A. F. (1941). Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-cholestene-7-carboxylic Acid. Journal of the American Chemical Society, 63(10), 2727-2729. doi:10.1021/ja01855a063 |
es_ES |
dc.description.references |
Wu, M., Zhao, G., Li, M., Liu, L., & Li, D. (2009). Applicability of boron-doped diamond electrode to the degradation of chloride-mediated and chloride-free wastewaters. Journal of Hazardous Materials, 163(1), 26-31. doi:10.1016/j.jhazmat.2008.06.050 |
es_ES |
dc.description.references |
Zhao, G., Zhang, Y., lei, Y., Lv, B., Gao, J., Zhang, Y., & Li, D. (2010). Fabrication and Electrochemical Treatment Application of A Novel Lead Dioxide Anode with Superhydrophobic Surfaces, High Oxygen Evolution Potential, and Oxidation Capability. Environmental Science & Technology, 44(5), 1754-1759. doi:10.1021/es902336d |
es_ES |
dc.subject.ods |
06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
es_ES |