- -

Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrillo-Abad, Jordi es_ES
dc.contributor.author Mora-Gómez, Julia es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Mestre, S. es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2021-07-23T03:31:13Z
dc.date.available 2021-07-23T03:31:13Z
dc.date.issued 2020-08-15 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169900
dc.description.abstract [EN] The electrochemical oxidation of the antibiotic Norfloxacin (NOR) in chloride media on different anodic materials was studied at two different electrochemical reactors. The results were compared with those obtained in sulphate media. The anodes under study were a commercial boron-doped diamond (BBD) and two different ceramic electrodes based on tin oxide doped with antimony oxide in the presence (CuO) and absence (BCE) of copper oxide as sintering aid. The reactors employed were a one-compartment reactor (OCR) and a two-compartment one with a membrane separating both electrodes (EMR). The use of the membrane clearly enhanced both NOR degradation and TOC mineralization for all the anodic materials studied since some parallel reactions were avoided. Additionally, two different pathways for NOR oxidation were observed as a function of the reactor employed. The EMR also favoured the ionic by-products generation and the electrolyte dechlorination. NO3¿ increased with the oxidation power of the anode employed and it was also enhanced by the EMR use. Chloride media favours ceramic electrodes performance independently of the reactor employed as they did not generate an excess of oxidants as BDD did. The BCE electrode is an interesting alternative to BDD since although its oxidative power was lower, it presented similar current efficiency with lower energy consumption. es_ES
dc.description.sponsorship The authors want to express their gratitude to the Ministerio de Economia y Competitividad (Spain) and the FEDER funds, which financially support the project RTI2018-101341-B-C21. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Norfloxacin (NOR) es_ES
dc.subject Boron-doped diamond (BDD) anode es_ES
dc.subject Ceramic anodes es_ES
dc.subject Electro-oxidation es_ES
dc.subject Electrochemical membrane reactor es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2020.110710 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101341-B-C21/ES/ELECTROCHEMICAL CHARACTERIZATION OF CERAMIC ELECTRODES AND MEMBRANES AND APPLICATION TO PHOTOELECTROOXIDATION AND ELECTROFILTRATION PROCESSES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Carrillo-Abad, J.; Mora-Gómez, J.; García Gabaldón, M.; Mestre, S.; Pérez-Herranz, V. (2020). Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes. Journal of Environmental Management. 268:1-9. https://doi.org/10.1016/j.jenvman.2020.110710 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2020.110710 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 268 es_ES
dc.identifier.pmid 32510444 es_ES
dc.relation.pasarela S\417901 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570-6631. doi:10.1021/cr900136g es_ES
dc.description.references Dodd, M. C., Shah, A. D., von Gunten, U., & Huang, C.-H. (2005). Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine:  Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Technology, 39(18), 7065-7076. doi:10.1021/es050054e es_ES
dc.description.references Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035 es_ES
dc.description.references Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003 es_ES
dc.description.references Coledam, D. A. C., Sánchez-Montes, I., Silva, B. F., & Aquino, J. M. (2018). On the performance of HOCl/Fe2+, HOCl/Fe2+/UVA, and HOCl/UVC processes using in situ electrogenerated active chlorine to mineralize the herbicide picloram. Applied Catalysis B: Environmental, 227, 170-177. doi:10.1016/j.apcatb.2017.12.072 es_ES
dc.description.references Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere, 210, 615-623. doi:10.1016/j.chemosphere.2018.07.057 es_ES
dc.description.references Ghernaout, D., Naceur, M. W., & Aouabed, A. (2011). On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination, 270(1-3), 9-22. doi:10.1016/j.desal.2011.01.010 es_ES
dc.description.references Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55(6), 2101-2115. doi:10.1016/j.electacta.2009.11.040 es_ES
dc.description.references Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. doi:10.1016/j.jhazmat.2014.05.076 es_ES
dc.description.references Huang, K.-J., Liu, X., Xie, W.-Z., & Yuan, H.-X. (2008). Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids and Surfaces B: Biointerfaces, 64(2), 269-274. doi:10.1016/j.colsurfb.2008.02.003 es_ES
dc.description.references Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E., & Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of The Total Environment, 575, 1228-1238. doi:10.1016/j.scitotenv.2016.09.201 es_ES
dc.description.references Liu, C., Nanaboina, V., Korshin, G. V., & Jiang, W. (2012). Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Research, 46(16), 5235-5246. doi:10.1016/j.watres.2012.07.005 es_ES
dc.description.references Ma, X., Cheng, Y., Ge, Y., Wu, H., Li, Q., Gao, N., & Deng, J. (2018). Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrasonics Sonochemistry, 40, 763-772. doi:10.1016/j.ultsonch.2017.08.025 es_ES
dc.description.references Madsen, H. T., Søgaard, E. G., & Muff, J. (2015). Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes. Chemosphere, 120, 756-763. doi:10.1016/j.chemosphere.2014.10.058 es_ES
dc.description.references Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62-71. doi:10.1016/j.coelec.2018.07.010 es_ES
dc.description.references Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017 es_ES
dc.description.references Mora-Gómez, J., García-Gabaldón, M., Carrillo-Abad, J., Montañés, M. T., Mestre, S., & Pérez-Herranz, V. (2020). Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes. Separation and Purification Technology, 241, 116684. doi:10.1016/j.seppur.2020.116684 es_ES
dc.description.references Murugananthan, M., Latha, S. S., Bhaskar Raju, G., & Yoshihara, S. (2011). Role of electrolyte on anodic mineralization of atenolol at boron doped diamond and Pt electrodes. Separation and Purification Technology, 79(1), 56-62. doi:10.1016/j.seppur.2011.03.011 es_ES
dc.description.references Neugebauer, U., Szeghalmi, A., Schmitt, M., Kiefer, W., Popp, J., & Holzgrabe, U. (2005). Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1505-1517. doi:10.1016/j.saa.2004.11.014 es_ES
dc.description.references Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105 es_ES
dc.description.references Sánchez-Montes, I., Fuzer Neto, J. R., Silva, B. F., Silva, A. J., Aquino, J. M., & Rocha-Filho, R. C. (2018). Evolution of the antibacterial activity and oxidation intermediates during the electrochemical degradation of norfloxacin in a flow cell with a PTFE-doped β-PbO2 anode: Critical comparison to a BDD anode. Electrochimica Acta, 284, 260-270. doi:10.1016/j.electacta.2018.07.122 es_ES
dc.description.references Urtiaga, A., Soriano, A., & Carrillo-Abad, J. (2018). BDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formation. Chemosphere, 201, 571-577. doi:10.1016/j.chemosphere.2018.03.027 es_ES
dc.description.references Wang, Y., Shen, C., Zhang, M., Zhang, B.-T., & Yu, Y.-G. (2016). The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chemical Engineering Journal, 296, 79-89. doi:10.1016/j.cej.2016.03.093 es_ES
dc.description.references Woodward, R. B. (1942). Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. Journal of the American Chemical Society, 64(1), 76-77. doi:10.1021/ja01253a019 es_ES
dc.description.references Woodward, R. B. (1942). Structure and Absorption Spectra. III. Normal Conjugated Dienes. Journal of the American Chemical Society, 64(1), 72-75. doi:10.1021/ja01253a018 es_ES
dc.description.references Woodward, R. B., & Clifford, A. F. (1941). Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-cholestene-7-carboxylic Acid. Journal of the American Chemical Society, 63(10), 2727-2729. doi:10.1021/ja01855a063 es_ES
dc.description.references Wu, M., Zhao, G., Li, M., Liu, L., & Li, D. (2009). Applicability of boron-doped diamond electrode to the degradation of chloride-mediated and chloride-free wastewaters. Journal of Hazardous Materials, 163(1), 26-31. doi:10.1016/j.jhazmat.2008.06.050 es_ES
dc.description.references Zhao, G., Zhang, Y., lei, Y., Lv, B., Gao, J., Zhang, Y., & Li, D. (2010). Fabrication and Electrochemical Treatment Application of A Novel Lead Dioxide Anode with Superhydrophobic Surfaces, High Oxygen Evolution Potential, and Oxidation Capability. Environmental Science & Technology, 44(5), 1754-1759. doi:10.1021/es902336d es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem