Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570-6631. doi:10.1021/cr900136g
Dodd, M. C., Shah, A. D., von Gunten, U., & Huang, C.-H. (2005). Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine: Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Technology, 39(18), 7065-7076. doi:10.1021/es050054e
Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035
[+]
Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570-6631. doi:10.1021/cr900136g
Dodd, M. C., Shah, A. D., von Gunten, U., & Huang, C.-H. (2005). Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine: Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Technology, 39(18), 7065-7076. doi:10.1021/es050054e
Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035
Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003
Coledam, D. A. C., Sánchez-Montes, I., Silva, B. F., & Aquino, J. M. (2018). On the performance of HOCl/Fe2+, HOCl/Fe2+/UVA, and HOCl/UVC processes using in situ electrogenerated active chlorine to mineralize the herbicide picloram. Applied Catalysis B: Environmental, 227, 170-177. doi:10.1016/j.apcatb.2017.12.072
Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere, 210, 615-623. doi:10.1016/j.chemosphere.2018.07.057
Ghernaout, D., Naceur, M. W., & Aouabed, A. (2011). On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination, 270(1-3), 9-22. doi:10.1016/j.desal.2011.01.010
Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55(6), 2101-2115. doi:10.1016/j.electacta.2009.11.040
Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. doi:10.1016/j.jhazmat.2014.05.076
Huang, K.-J., Liu, X., Xie, W.-Z., & Yuan, H.-X. (2008). Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion. Colloids and Surfaces B: Biointerfaces, 64(2), 269-274. doi:10.1016/j.colsurfb.2008.02.003
Jojoa-Sierra, S. D., Silva-Agredo, J., Herrera-Calderon, E., & Torres-Palma, R. A. (2017). Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of The Total Environment, 575, 1228-1238. doi:10.1016/j.scitotenv.2016.09.201
Liu, C., Nanaboina, V., Korshin, G. V., & Jiang, W. (2012). Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Research, 46(16), 5235-5246. doi:10.1016/j.watres.2012.07.005
Ma, X., Cheng, Y., Ge, Y., Wu, H., Li, Q., Gao, N., & Deng, J. (2018). Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrasonics Sonochemistry, 40, 763-772. doi:10.1016/j.ultsonch.2017.08.025
Madsen, H. T., Søgaard, E. G., & Muff, J. (2015). Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes. Chemosphere, 120, 756-763. doi:10.1016/j.chemosphere.2014.10.058
Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62-71. doi:10.1016/j.coelec.2018.07.010
Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017
Mora-Gómez, J., García-Gabaldón, M., Carrillo-Abad, J., Montañés, M. T., Mestre, S., & Pérez-Herranz, V. (2020). Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes. Separation and Purification Technology, 241, 116684. doi:10.1016/j.seppur.2020.116684
Murugananthan, M., Latha, S. S., Bhaskar Raju, G., & Yoshihara, S. (2011). Role of electrolyte on anodic mineralization of atenolol at boron doped diamond and Pt electrodes. Separation and Purification Technology, 79(1), 56-62. doi:10.1016/j.seppur.2011.03.011
Neugebauer, U., Szeghalmi, A., Schmitt, M., Kiefer, W., Popp, J., & Holzgrabe, U. (2005). Vibrational spectroscopic characterization of fluoroquinolones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1505-1517. doi:10.1016/j.saa.2004.11.014
Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105
Sánchez-Montes, I., Fuzer Neto, J. R., Silva, B. F., Silva, A. J., Aquino, J. M., & Rocha-Filho, R. C. (2018). Evolution of the antibacterial activity and oxidation intermediates during the electrochemical degradation of norfloxacin in a flow cell with a PTFE-doped β-PbO2 anode: Critical comparison to a BDD anode. Electrochimica Acta, 284, 260-270. doi:10.1016/j.electacta.2018.07.122
Urtiaga, A., Soriano, A., & Carrillo-Abad, J. (2018). BDD anodic treatment of 6:2 fluorotelomer sulfonate (6:2 FTSA). Evaluation of operating variables and by-product formation. Chemosphere, 201, 571-577. doi:10.1016/j.chemosphere.2018.03.027
Wang, Y., Shen, C., Zhang, M., Zhang, B.-T., & Yu, Y.-G. (2016). The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chemical Engineering Journal, 296, 79-89. doi:10.1016/j.cej.2016.03.093
Woodward, R. B. (1942). Structure and Absorption Spectra. IV. Further Observations on α,β-Unsaturated Ketones. Journal of the American Chemical Society, 64(1), 76-77. doi:10.1021/ja01253a019
Woodward, R. B. (1942). Structure and Absorption Spectra. III. Normal Conjugated Dienes. Journal of the American Chemical Society, 64(1), 72-75. doi:10.1021/ja01253a018
Woodward, R. B., & Clifford, A. F. (1941). Structure and Absorption Spectra. II. 3-Acetoxy-Δ5-(6)-nor-cholestene-7-carboxylic Acid. Journal of the American Chemical Society, 63(10), 2727-2729. doi:10.1021/ja01855a063
Wu, M., Zhao, G., Li, M., Liu, L., & Li, D. (2009). Applicability of boron-doped diamond electrode to the degradation of chloride-mediated and chloride-free wastewaters. Journal of Hazardous Materials, 163(1), 26-31. doi:10.1016/j.jhazmat.2008.06.050
Zhao, G., Zhang, Y., lei, Y., Lv, B., Gao, J., Zhang, Y., & Li, D. (2010). Fabrication and Electrochemical Treatment Application of A Novel Lead Dioxide Anode with Superhydrophobic Surfaces, High Oxygen Evolution Potential, and Oxidation Capability. Environmental Science & Technology, 44(5), 1754-1759. doi:10.1021/es902336d
[-]