- -

Wastewater treatment plant as microplastics release source - Quantification and identification techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wastewater treatment plant as microplastics release source - Quantification and identification techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bretas Alvim, C. es_ES
dc.contributor.author Mendoza Roca, José Antonio es_ES
dc.contributor.author Bes-Piá, M.A. es_ES
dc.date.accessioned 2021-07-23T03:31:18Z
dc.date.available 2021-07-23T03:31:18Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169902
dc.description.abstract [EN] The high presence of microplastics (MPs) in different sizes, materials and concentrations in the aquatic environment is a global concern due to their potential physically and chemically harm to aquatic organisms including mammals. Furthermore, the bioaccumulation of these compounds is leading to their ingestion by humans through the consumption of sea food and even through the terrestrial food chain. Even though conventional wastewater treatment plants are capable of eliminating more than 90% of the influent MPs, these systems are still the main source of MPs introduction in the environment due to the high volumes of effluents generated and returned to the environment. The amount of MPs dumped by WWTP is influenced by the configuration of the WWTP, population served and influent flow. Thus, the average of MP/L disposed vary widely depending on the region. In addition to MPs disposed in water bodies, more than 80% of these emerging contaminants, which enter the WWTP, are retained in biosolids that can be applied as fertilizers, representing a potential source of soil contamination. Due to the continuous disposal of MPs in the environment by effluent treatment systems and their polluting potential, separation and identification techniques have been assessed by several researchers, but unfortunately, there are no standard protocols for them. Aiming to provide insight about the relevance of studying the WWTP as source of MPs, this review summarizes the currently methodologies used to classify and identify them. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Microplastics es_ES
dc.subject Wastewater treatment plant es_ES
dc.subject Separation es_ES
dc.subject Identification es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Wastewater treatment plant as microplastics release source - Quantification and identification techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2019.109739 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.description.bibliographicCitation Bretas Alvim, C.; Mendoza Roca, JA.; Bes-Piá, M. (2020). Wastewater treatment plant as microplastics release source - Quantification and identification techniques. Journal of Environmental Management. 255:1-11. https://doi.org/10.1016/j.jenvman.2019.109739 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2019.109739 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 255 es_ES
dc.identifier.pmid 32063314 es_ES
dc.relation.pasarela S\401615 es_ES
dc.description.references Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Ribeiro-Claro, P. J. A. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426-440. doi:10.1016/j.watres.2018.05.060 es_ES
dc.description.references Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013 es_ES
dc.description.references Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572. doi:10.1016/j.jece.2013.10.011 es_ES
dc.description.references Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology & Biotechnology, 83(10), 1323-1338. doi:10.1002/jctb.1988 es_ES
dc.description.references Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. doi:10.1021/es201811s es_ES
dc.description.references Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002 es_ES
dc.description.references Catarino, A. I., Thompson, R., Sanderson, W., & Henry, T. B. (2016). Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environmental Toxicology and Chemistry, 36(4), 947-951. doi:10.1002/etc.3608 es_ES
dc.description.references Chang, M. (2015). Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Marine Pollution Bulletin, 101(1), 330-333. doi:10.1016/j.marpolbul.2015.10.074 es_ES
dc.description.references Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic Ingestion by Zooplankton. Environmental Science & Technology, 47(12), 6646-6655. doi:10.1021/es400663f es_ES
dc.description.references Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S. F., & Narayanaswamy, B. E. (2017). Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Analytical Methods, 9(9), 1437-1445. doi:10.1039/c6ay02343f es_ES
dc.description.references Devi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of The Total Environment, 571, 643-657. doi:10.1016/j.scitotenv.2016.07.032 es_ES
dc.description.references Duemichen, E., Braun, U., Senz, R., Fabian, G., & Sturm, H. (2014). Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. Journal of Chromatography A, 1354, 117-128. doi:10.1016/j.chroma.2014.05.057 es_ES
dc.description.references Dümichen, E., Eisentraut, P., Bannick, C. G., Barthel, A.-K., Senz, R., & Braun, U. (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174, 572-584. doi:10.1016/j.chemosphere.2017.02.010 es_ES
dc.description.references Dyachenko, A., Mitchell, J., & Arsem, N. (2017). Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Analytical Methods, 9(9), 1412-1418. doi:10.1039/c6ay02397e es_ES
dc.description.references Elert, A. M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., & Braun, U. (2017). Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environmental Pollution, 231, 1256-1264. doi:10.1016/j.envpol.2017.08.074 es_ES
dc.description.references Enders, K., Lenz, R., Beer, S., & Stedmon, C. A. (2016). Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. ICES Journal of Marine Science, 74(1), 326-331. doi:10.1093/icesjms/fsw173 es_ES
dc.description.references Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Environmental Science & Technology, 51(23), 13641-13648. doi:10.1021/acs.est.7b04512 es_ES
dc.description.references De Falco, F., Gullo, M. P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., … Avella, M. (2018). Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environmental Pollution, 236, 916-925. doi:10.1016/j.envpol.2017.10.057 es_ES
dc.description.references Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228. doi:10.1016/j.marpolbul.2009.04.025 es_ES
dc.description.references Fischer, M., & Scholz-Böttcher, B. M. (2017). Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 51(9), 5052-5060. doi:10.1021/acs.est.6b06362 es_ES
dc.description.references Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M.-T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes & Impacts, 15(10), 1949. doi:10.1039/c3em00214d es_ES
dc.description.references Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. doi:10.1016/j.marpolbul.2018.06.006 es_ES
dc.description.references Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. (2019). Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68, 75-79. doi:10.1016/j.etap.2019.03.007 es_ES
dc.description.references Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment, 190(11). doi:10.1007/s10661-018-7010-y es_ES
dc.description.references Hanvey, J. S., Lewis, P. J., Lavers, J. L., Crosbie, N. D., Pozo, K., & Clarke, B. O. (2017). A review of analytical techniques for quantifying microplastics in sediments. Analytical Methods, 9(9), 1369-1383. doi:10.1039/c6ay02707e es_ES
dc.description.references He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi:10.1016/j.trac.2018.10.006 es_ES
dc.description.references Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505 es_ES
dc.description.references Hidayaturrahman, H., & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. doi:10.1016/j.marpolbul.2019.06.071 es_ES
dc.description.references Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. de los A., Sanchez del Cid, L., Chi, C., … Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1). doi:10.1038/s41598-017-14588-2 es_ES
dc.description.references Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409-7417. doi:10.1021/acs.est.8b01517 es_ES
dc.description.references Jochem, G., & Lehnert, R. J. (2002). On the potential of Raman microscopy for the forensic analysis of coloured textile fibres. Science & Justice, 42(4), 215-221. doi:10.1016/s1355-0306(02)71831-5 es_ES
dc.description.references Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31. doi:10.1016/j.chemosphere.2017.08.131 es_ES
dc.description.references Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.-J., & Voit, B. (2016). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391. doi:10.1007/s00216-016-9956-3 es_ES
dc.description.references Käppler, A., Fischer, M., Scholz-Böttcher, B. M., Oberbeckmann, S., Labrenz, M., Fischer, D., … Voit, B. (2018). Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Analytical and Bioanalytical Chemistry, 410(21), 5313-5327. doi:10.1007/s00216-018-1185-5 es_ES
dc.description.references Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049 es_ES
dc.description.references Lei, K., Qiao, F., Liu, Q., Wei, Z., Qi, H., Cui, S., … An, L. (2017). Microplastics releasing from personal care and cosmetic products in China. Marine Pollution Bulletin, 123(1-2), 122-126. doi:10.1016/j.marpolbul.2017.09.016 es_ES
dc.description.references Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A., & Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100(1), 82-91. doi:10.1016/j.marpolbul.2015.09.026 es_ES
dc.description.references Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133-142. doi:10.1016/j.envint.2017.01.018 es_ES
dc.description.references Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi:10.1016/j.watres.2017.12.056 es_ES
dc.description.references Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., & Zeng, E. Y. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75-85. doi:10.1016/j.watres.2018.05.034 es_ES
dc.description.references Liu, X., Yuan, W., Di, M., Li, Z., & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182. doi:10.1016/j.cej.2019.01.033 es_ES
dc.description.references Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., … Gerdts, G. (2017). Enzymatic Purification of Microplastics in Environmental Samples. Environmental Science & Technology, 51(24), 14283-14292. doi:10.1021/acs.est.7b03055 es_ES
dc.description.references Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., … Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155, 255-265. doi:10.1016/j.watres.2019.02.028 es_ES
dc.description.references Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1). doi:10.1038/srep44501 es_ES
dc.description.references Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., … Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of The Total Environment, 652, 602-610. doi:10.1016/j.scitotenv.2018.10.269 es_ES
dc.description.references Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., & Morrison, L. (2016). Microplastics in Sewage Sludge: Effects of Treatment. Environmental Science & Technology, 51(2), 810-818. doi:10.1021/acs.est.6b04048 es_ES
dc.description.references Massonnet, G., Buzzini, P., Monard, F., Jochem, G., Fido, L., Bell, S., … Blumer, A. (2012). Raman spectroscopy and microspectrophotometry of reactive dyes on cotton fibres: Analysis and detection limits. Forensic Science International, 222(1-3), 200-207. doi:10.1016/j.forsciint.2012.05.025 es_ES
dc.description.references Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2000). Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology, 35(2), 318-324. doi:10.1021/es0010498 es_ES
dc.description.references Michielssen, M. R., Michielssen, E. R., Ni, J., & Duhaime, M. B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology, 2(6), 1064-1073. doi:10.1039/c6ew00207b es_ES
dc.description.references Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372. doi:10.1016/j.watres.2016.11.015 es_ES
dc.description.references Mohapatra, D. P., Cledón, M., Brar, S. K., & Surampalli, R. Y. (2016). Application of Wastewater and Biosolids in Soil: Occurrence and Fate of Emerging Contaminants. Water, Air, & Soil Pollution, 227(3). doi:10.1007/s11270-016-2768-4 es_ES
dc.description.references Munno, K., Helm, P. A., Jackson, D. A., Rochman, C., & Sims, A. (2017). Impacts of temperature and selected chemical digestion methods on microplastic particles. Environmental Toxicology and Chemistry, 37(1), 91-98. doi:10.1002/etc.3935 es_ES
dc.description.references Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416 es_ES
dc.description.references Naidoo, T., Goordiyal, K., & Glassom, D. (2017). Are Nitric Acid (HNO3) Digestions Efficient in Isolating Microplastics from Juvenile Fish? Water, Air, & Soil Pollution, 228(12). doi:10.1007/s11270-017-3654-4 es_ES
dc.description.references Napper, I. E., Bakir, A., Rowland, S. J., & Thompson, R. C. (2015). Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin, 99(1-2), 178-185. doi:10.1016/j.marpolbul.2015.07.029 es_ES
dc.description.references Ng, E.-L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H.-W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377-1388. doi:10.1016/j.scitotenv.2018.01.341 es_ES
dc.description.references Nizzetto, L., Futter, M., & Langaas, S. (2016). Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science & Technology, 50(20), 10777-10779. doi:10.1021/acs.est.6b04140 es_ES
dc.description.references Nuelle, M.-T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161-169. doi:10.1016/j.envpol.2013.07.027 es_ES
dc.description.references Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. doi:10.1016/j.trac.2018.10.029 es_ES
dc.description.references Qiu, Q., Tan, Z., Wang, J., Peng, J., Li, M., & Zhan, Z. (2016). Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuarine, Coastal and Shelf Science, 176, 102-109. doi:10.1016/j.ecss.2016.04.012 es_ES
dc.description.references Rios Mendoza, L. M., Karapanagioti, H., & Álvarez, N. R. (2018). Micro(nanoplastics) in the marine environment: Current knowledge and gaps. Current Opinion in Environmental Science & Health, 1, 47-51. doi:10.1016/j.coesh.2017.11.004 es_ES
dc.description.references Rocha-Santos, T. A. P. (2018). Editorial overview: Micro and nano-plastics. Current Opinion in Environmental Science & Health, 1, 52-54. doi:10.1016/j.coesh.2018.01.003 es_ES
dc.description.references Rocha-Santos, T., & Duarte, A. C. (2015). A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends in Analytical Chemistry, 65, 47-53. doi:10.1016/j.trac.2014.10.011 es_ES
dc.description.references Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 142, 1-9. doi:10.1016/j.watres.2018.05.019 es_ES
dc.description.references Sujathan, S., Kniggendorf, A.-K., Kumar, A., Roth, B., Rosenwinkel, K.-H., & Nogueira, R. (2017). Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge. Archives of Environmental Contamination and Toxicology, 73(4), 641-648. doi:10.1007/s00244-017-0415-8 es_ES
dc.description.references Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372-375. doi:10.1039/c6cc08798a es_ES
dc.description.references Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360 es_ES
dc.description.references Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. doi:10.1016/j.watres.2017.07.005 es_ES
dc.description.references Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. doi:10.1016/j.watres.2016.11.046 es_ES
dc.description.references Von Friesen, L. W., Granberg, M. E., Hassellöv, M., Gabrielsen, G. W., & Magnusson, K. (2019). An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. Marine Pollution Bulletin, 142, 129-134. doi:10.1016/j.marpolbul.2019.03.016 es_ES
dc.description.references Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., … Hughes, K. A. (2017). Microplastics in the Antarctic marine system: An emerging area of research. Science of The Total Environment, 598, 220-227. doi:10.1016/j.scitotenv.2017.03.283 es_ES
dc.description.references Wang, W., & Wang, J. (2018). Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC Trends in Analytical Chemistry, 108, 195-202. doi:10.1016/j.trac.2018.08.026 es_ES
dc.description.references Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem