- -

Wastewater treatment plant as microplastics release source - Quantification and identification techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wastewater treatment plant as microplastics release source - Quantification and identification techniques

Mostrar el registro completo del ítem

Bretas Alvim, C.; Mendoza Roca, JA.; Bes-Piá, M. (2020). Wastewater treatment plant as microplastics release source - Quantification and identification techniques. Journal of Environmental Management. 255:1-11. https://doi.org/10.1016/j.jenvman.2019.109739

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169902

Ficheros en el ítem

Metadatos del ítem

Título: Wastewater treatment plant as microplastics release source - Quantification and identification techniques
Autor: Bretas Alvim, C. Mendoza Roca, José Antonio Bes-Piá, M.A.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Fecha difusión:
Resumen:
[EN] The high presence of microplastics (MPs) in different sizes, materials and concentrations in the aquatic environment is a global concern due to their potential physically and chemically harm to aquatic organisms ...[+]
Palabras clave: Microplastics , Wastewater treatment plant , Separation , Identification
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Environmental Management. (issn: 0301-4797 )
DOI: 10.1016/j.jenvman.2019.109739
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jenvman.2019.109739
Tipo: Artículo

References

Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Ribeiro-Claro, P. J. A. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426-440. doi:10.1016/j.watres.2018.05.060

Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013

Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572. doi:10.1016/j.jece.2013.10.011 [+]
Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Ribeiro-Claro, P. J. A. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426-440. doi:10.1016/j.watres.2018.05.060

Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013

Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572. doi:10.1016/j.jece.2013.10.011

Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology & Biotechnology, 83(10), 1323-1338. doi:10.1002/jctb.1988

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. doi:10.1021/es201811s

Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002

Catarino, A. I., Thompson, R., Sanderson, W., & Henry, T. B. (2016). Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environmental Toxicology and Chemistry, 36(4), 947-951. doi:10.1002/etc.3608

Chang, M. (2015). Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Marine Pollution Bulletin, 101(1), 330-333. doi:10.1016/j.marpolbul.2015.10.074

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic Ingestion by Zooplankton. Environmental Science & Technology, 47(12), 6646-6655. doi:10.1021/es400663f

Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S. F., & Narayanaswamy, B. E. (2017). Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Analytical Methods, 9(9), 1437-1445. doi:10.1039/c6ay02343f

Devi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of The Total Environment, 571, 643-657. doi:10.1016/j.scitotenv.2016.07.032

Duemichen, E., Braun, U., Senz, R., Fabian, G., & Sturm, H. (2014). Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. Journal of Chromatography A, 1354, 117-128. doi:10.1016/j.chroma.2014.05.057

Dümichen, E., Eisentraut, P., Bannick, C. G., Barthel, A.-K., Senz, R., & Braun, U. (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174, 572-584. doi:10.1016/j.chemosphere.2017.02.010

Dyachenko, A., Mitchell, J., & Arsem, N. (2017). Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Analytical Methods, 9(9), 1412-1418. doi:10.1039/c6ay02397e

Elert, A. M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., & Braun, U. (2017). Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environmental Pollution, 231, 1256-1264. doi:10.1016/j.envpol.2017.08.074

Enders, K., Lenz, R., Beer, S., & Stedmon, C. A. (2016). Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. ICES Journal of Marine Science, 74(1), 326-331. doi:10.1093/icesjms/fsw173

Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Environmental Science & Technology, 51(23), 13641-13648. doi:10.1021/acs.est.7b04512

De Falco, F., Gullo, M. P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., … Avella, M. (2018). Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environmental Pollution, 236, 916-925. doi:10.1016/j.envpol.2017.10.057

Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228. doi:10.1016/j.marpolbul.2009.04.025

Fischer, M., & Scholz-Böttcher, B. M. (2017). Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 51(9), 5052-5060. doi:10.1021/acs.est.6b06362

Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M.-T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes & Impacts, 15(10), 1949. doi:10.1039/c3em00214d

Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. doi:10.1016/j.marpolbul.2018.06.006

Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. (2019). Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68, 75-79. doi:10.1016/j.etap.2019.03.007

Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment, 190(11). doi:10.1007/s10661-018-7010-y

Hanvey, J. S., Lewis, P. J., Lavers, J. L., Crosbie, N. D., Pozo, K., & Clarke, B. O. (2017). A review of analytical techniques for quantifying microplastics in sediments. Analytical Methods, 9(9), 1369-1383. doi:10.1039/c6ay02707e

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi:10.1016/j.trac.2018.10.006

Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505

Hidayaturrahman, H., & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. doi:10.1016/j.marpolbul.2019.06.071

Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. de los A., Sanchez del Cid, L., Chi, C., … Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1). doi:10.1038/s41598-017-14588-2

Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409-7417. doi:10.1021/acs.est.8b01517

Jochem, G., & Lehnert, R. J. (2002). On the potential of Raman microscopy for the forensic analysis of coloured textile fibres. Science & Justice, 42(4), 215-221. doi:10.1016/s1355-0306(02)71831-5

Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31. doi:10.1016/j.chemosphere.2017.08.131

Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.-J., & Voit, B. (2016). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391. doi:10.1007/s00216-016-9956-3

Käppler, A., Fischer, M., Scholz-Böttcher, B. M., Oberbeckmann, S., Labrenz, M., Fischer, D., … Voit, B. (2018). Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Analytical and Bioanalytical Chemistry, 410(21), 5313-5327. doi:10.1007/s00216-018-1185-5

Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049

Lei, K., Qiao, F., Liu, Q., Wei, Z., Qi, H., Cui, S., … An, L. (2017). Microplastics releasing from personal care and cosmetic products in China. Marine Pollution Bulletin, 123(1-2), 122-126. doi:10.1016/j.marpolbul.2017.09.016

Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A., & Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100(1), 82-91. doi:10.1016/j.marpolbul.2015.09.026

Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133-142. doi:10.1016/j.envint.2017.01.018

Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi:10.1016/j.watres.2017.12.056

Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., & Zeng, E. Y. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75-85. doi:10.1016/j.watres.2018.05.034

Liu, X., Yuan, W., Di, M., Li, Z., & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182. doi:10.1016/j.cej.2019.01.033

Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., … Gerdts, G. (2017). Enzymatic Purification of Microplastics in Environmental Samples. Environmental Science & Technology, 51(24), 14283-14292. doi:10.1021/acs.est.7b03055

Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., … Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155, 255-265. doi:10.1016/j.watres.2019.02.028

Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1). doi:10.1038/srep44501

Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., … Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of The Total Environment, 652, 602-610. doi:10.1016/j.scitotenv.2018.10.269

Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., & Morrison, L. (2016). Microplastics in Sewage Sludge: Effects of Treatment. Environmental Science & Technology, 51(2), 810-818. doi:10.1021/acs.est.6b04048

Massonnet, G., Buzzini, P., Monard, F., Jochem, G., Fido, L., Bell, S., … Blumer, A. (2012). Raman spectroscopy and microspectrophotometry of reactive dyes on cotton fibres: Analysis and detection limits. Forensic Science International, 222(1-3), 200-207. doi:10.1016/j.forsciint.2012.05.025

Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2000). Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology, 35(2), 318-324. doi:10.1021/es0010498

Michielssen, M. R., Michielssen, E. R., Ni, J., & Duhaime, M. B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology, 2(6), 1064-1073. doi:10.1039/c6ew00207b

Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372. doi:10.1016/j.watres.2016.11.015

Mohapatra, D. P., Cledón, M., Brar, S. K., & Surampalli, R. Y. (2016). Application of Wastewater and Biosolids in Soil: Occurrence and Fate of Emerging Contaminants. Water, Air, & Soil Pollution, 227(3). doi:10.1007/s11270-016-2768-4

Munno, K., Helm, P. A., Jackson, D. A., Rochman, C., & Sims, A. (2017). Impacts of temperature and selected chemical digestion methods on microplastic particles. Environmental Toxicology and Chemistry, 37(1), 91-98. doi:10.1002/etc.3935

Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416

Naidoo, T., Goordiyal, K., & Glassom, D. (2017). Are Nitric Acid (HNO3) Digestions Efficient in Isolating Microplastics from Juvenile Fish? Water, Air, & Soil Pollution, 228(12). doi:10.1007/s11270-017-3654-4

Napper, I. E., Bakir, A., Rowland, S. J., & Thompson, R. C. (2015). Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin, 99(1-2), 178-185. doi:10.1016/j.marpolbul.2015.07.029

Ng, E.-L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H.-W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377-1388. doi:10.1016/j.scitotenv.2018.01.341

Nizzetto, L., Futter, M., & Langaas, S. (2016). Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science & Technology, 50(20), 10777-10779. doi:10.1021/acs.est.6b04140

Nuelle, M.-T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161-169. doi:10.1016/j.envpol.2013.07.027

Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. doi:10.1016/j.trac.2018.10.029

Qiu, Q., Tan, Z., Wang, J., Peng, J., Li, M., & Zhan, Z. (2016). Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuarine, Coastal and Shelf Science, 176, 102-109. doi:10.1016/j.ecss.2016.04.012

Rios Mendoza, L. M., Karapanagioti, H., & Álvarez, N. R. (2018). Micro(nanoplastics) in the marine environment: Current knowledge and gaps. Current Opinion in Environmental Science & Health, 1, 47-51. doi:10.1016/j.coesh.2017.11.004

Rocha-Santos, T. A. P. (2018). Editorial overview: Micro and nano-plastics. Current Opinion in Environmental Science & Health, 1, 52-54. doi:10.1016/j.coesh.2018.01.003

Rocha-Santos, T., & Duarte, A. C. (2015). A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends in Analytical Chemistry, 65, 47-53. doi:10.1016/j.trac.2014.10.011

Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 142, 1-9. doi:10.1016/j.watres.2018.05.019

Sujathan, S., Kniggendorf, A.-K., Kumar, A., Roth, B., Rosenwinkel, K.-H., & Nogueira, R. (2017). Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge. Archives of Environmental Contamination and Toxicology, 73(4), 641-648. doi:10.1007/s00244-017-0415-8

Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372-375. doi:10.1039/c6cc08798a

Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360

Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. doi:10.1016/j.watres.2017.07.005

Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. doi:10.1016/j.watres.2016.11.046

Von Friesen, L. W., Granberg, M. E., Hassellöv, M., Gabrielsen, G. W., & Magnusson, K. (2019). An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. Marine Pollution Bulletin, 142, 129-134. doi:10.1016/j.marpolbul.2019.03.016

Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., … Hughes, K. A. (2017). Microplastics in the Antarctic marine system: An emerging area of research. Science of The Total Environment, 598, 220-227. doi:10.1016/j.scitotenv.2017.03.283

Wang, W., & Wang, J. (2018). Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC Trends in Analytical Chemistry, 108, 195-202. doi:10.1016/j.trac.2018.08.026

Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem