ANDERSEN, N. B. (2004). REAL PALEY–WIENER THEOREMS. Bulletin of the London Mathematical Society, 36(04), 504-508. doi:10.1112/s0024609304003108
Andersen, N. B. (2014). EntireLp-functions of exponential type. Expositiones Mathematicae, 32(3), 199-220. doi:10.1016/j.exmath.2013.10.003
Andersen, N. B., & de Jeu, M. (2010). Real Paley–Wiener theorems and local spectral radius formulas. Transactions of the American Mathematical Society, 362(07), 3613-3640. doi:10.1090/s0002-9947-10-05044-0
[+]
ANDERSEN, N. B. (2004). REAL PALEY–WIENER THEOREMS. Bulletin of the London Mathematical Society, 36(04), 504-508. doi:10.1112/s0024609304003108
Andersen, N. B. (2014). EntireLp-functions of exponential type. Expositiones Mathematicae, 32(3), 199-220. doi:10.1016/j.exmath.2013.10.003
Andersen, N. B., & de Jeu, M. (2010). Real Paley–Wiener theorems and local spectral radius formulas. Transactions of the American Mathematical Society, 362(07), 3613-3640. doi:10.1090/s0002-9947-10-05044-0
Bang, H. H. (1990). A property of infinitely differentiable functions. Proceedings of the American Mathematical Society, 108(1), 73-73. doi:10.1090/s0002-9939-1990-1024259-9
Björck, G. (1966). Linear partial differential operators and generalized distributions. Arkiv för Matematik, 6(4-5), 351-407. doi:10.1007/bf02590963
Boiti, C., & Gallucci, E. (2017). The overdetermined Cauchy problem for $$\omega $$ ω -ultradifferentiable functions. manuscripta mathematica, 155(3-4), 419-448. doi:10.1007/s00229-017-0939-2
Boiti, C., & Jornet, D. (2016). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(3), 891-919. doi:10.1007/s13398-016-0329-8
Boiti, C., & Jornet, D. (2016). A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. Journal of Pseudo-Differential Operators and Applications, 8(2), 297-317. doi:10.1007/s11868-016-0163-y
Boiti, C., Jornet, D., & Juan-Huguet, J. (2014). Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients. Abstract and Applied Analysis, 2014, 1-17. doi:10.1155/2014/438716
Boiti, C., Jornet, D., & Oliaro, A. (2017). Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. Journal of Mathematical Analysis and Applications, 446(1), 920-944. doi:10.1016/j.jmaa.2016.09.029
Boiti, C., Jornet, D., & Oliaro, A. (2018). The Gabor wave front set in spaces of ultradifferentiable functions. Monatshefte für Mathematik, 188(2), 199-246. doi:10.1007/s00605-018-1242-3
Bonet, J., Meise, R., & Melikhov, S. N. (2007). A comparison of two different ways to define classes of ultradifferentiable functions. Bulletin of the Belgian Mathematical Society - Simon Stevin, 14(3). doi:10.36045/bbms/1190994204
Braun, R. W., Meise, R., & Taylor, B. A. (1990). Ultradifferentiable functions and Fourier analysis. Results in Mathematics, 17(3-4), 206-237. doi:10.1007/bf03322459
Fernández, C., Galbis, A., & Jornet, D. (2005). Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Mathematica, 167(2), 99-131. doi:10.4064/sm167-2-1
Gröchenig, K., & Zimmermann, G. (2004). Spaces of Test Functions via the STFT. Journal of Function Spaces and Applications, 2(1), 25-53. doi:10.1155/2004/498627
Juan-Huguet, J. (2012). A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, 208(1), 31-46. doi:10.4064/sm208-1-3
Langenbruch, M. (2005). Hermite functions and weighted spaces of generalized functions. manuscripta mathematica, 119(3), 269-285. doi:10.1007/s00229-005-0605-y
Meise, R., & Taylor, B. A. (1988). Whitney’s extension theorem for ultradifferentiable functions of Beurling type. Arkiv för Matematik, 26(1-2), 265-287. doi:10.1007/bf02386123
Tuan, V. K. (1999). On the supports of functions. Numerical Functional Analysis and Optimization, 20(3-4), 387-394. doi:10.1080/01630569908816899
Wong, M. W. (2005). Weyl Transforms, the Heat Kernel and Green Function of a Degenerate Elliptic Operator. Annals of Global Analysis and Geometry, 28(3), 271-283. doi:10.1007/s10455-005-1148-x
[-]