Mostrar el registro sencillo del ítem
dc.contributor.author | Boiti, Chiara | es_ES |
dc.contributor.author | Jornet Casanova, David | es_ES |
dc.contributor.author | Oliaro, Alessandro | es_ES |
dc.date.accessioned | 2021-07-23T03:31:22Z | |
dc.date.available | 2021-07-23T03:31:22Z | |
dc.date.issued | 2020-03-01 | es_ES |
dc.identifier.issn | 0022-1236 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169904 | |
dc.description.abstract | [EN] We develop real Paley-Wiener theorems for classes S-omega of ultradifferentiable functions and related L-p-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given. | es_ES |
dc.description.sponsorship | The authors are grateful for the careful reading and the suggestions of the referee, that improved the paper. The authors were partially supported by the INdAM/GNAMPA Project 2017 Equazioni a Derivate Parziali, Analisi di Gabor ed Analisi Microlocale, by the Projects FAR 2014 and FAR 2017 (University of Ferrara), by the Project FFABR 2017 (MIUR). The research of the second author was partially supported by the project MTM2016-76647-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Functional Analysis | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Real Paley-Wiener theorems | es_ES |
dc.subject | Weighted Schwartz classes | es_ES |
dc.subject | Short-time Fourier transform | es_ES |
dc.subject | Wigner transform | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Real Paley-Wiener theorems in spaces of ultradifferentiable functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfa.2019.108348 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FAR2017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIUR//FFABR 2017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIFE//FAR2014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Boiti, C.; Jornet Casanova, D.; Oliaro, A. (2020). Real Paley-Wiener theorems in spaces of ultradifferentiable functions. Journal of Functional Analysis. 278(4):1-45. https://doi.org/10.1016/j.jfa.2019.108348 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jfa.2019.108348 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 45 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 278 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\428960 | es_ES |
dc.contributor.funder | Università degli Studi di Ferrara | es_ES |
dc.contributor.funder | Istituto Nazionale di Alta Matematica "F. Severi", Italia | es_ES |
dc.contributor.funder | Ministero dell'Istruzione dell'Università e della Ricerca, Italia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | ANDERSEN, N. B. (2004). REAL PALEY–WIENER THEOREMS. Bulletin of the London Mathematical Society, 36(04), 504-508. doi:10.1112/s0024609304003108 | es_ES |
dc.description.references | Andersen, N. B. (2014). EntireLp-functions of exponential type. Expositiones Mathematicae, 32(3), 199-220. doi:10.1016/j.exmath.2013.10.003 | es_ES |
dc.description.references | Andersen, N. B., & de Jeu, M. (2010). Real Paley–Wiener theorems and local spectral radius formulas. Transactions of the American Mathematical Society, 362(07), 3613-3640. doi:10.1090/s0002-9947-10-05044-0 | es_ES |
dc.description.references | Bang, H. H. (1990). A property of infinitely differentiable functions. Proceedings of the American Mathematical Society, 108(1), 73-73. doi:10.1090/s0002-9939-1990-1024259-9 | es_ES |
dc.description.references | Björck, G. (1966). Linear partial differential operators and generalized distributions. Arkiv för Matematik, 6(4-5), 351-407. doi:10.1007/bf02590963 | es_ES |
dc.description.references | Boiti, C., & Gallucci, E. (2017). The overdetermined Cauchy problem for $$\omega $$ ω -ultradifferentiable functions. manuscripta mathematica, 155(3-4), 419-448. doi:10.1007/s00229-017-0939-2 | es_ES |
dc.description.references | Boiti, C., & Jornet, D. (2016). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(3), 891-919. doi:10.1007/s13398-016-0329-8 | es_ES |
dc.description.references | Boiti, C., & Jornet, D. (2016). A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. Journal of Pseudo-Differential Operators and Applications, 8(2), 297-317. doi:10.1007/s11868-016-0163-y | es_ES |
dc.description.references | Boiti, C., Jornet, D., & Juan-Huguet, J. (2014). Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients. Abstract and Applied Analysis, 2014, 1-17. doi:10.1155/2014/438716 | es_ES |
dc.description.references | Boiti, C., Jornet, D., & Oliaro, A. (2017). Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. Journal of Mathematical Analysis and Applications, 446(1), 920-944. doi:10.1016/j.jmaa.2016.09.029 | es_ES |
dc.description.references | Boiti, C., Jornet, D., & Oliaro, A. (2018). The Gabor wave front set in spaces of ultradifferentiable functions. Monatshefte für Mathematik, 188(2), 199-246. doi:10.1007/s00605-018-1242-3 | es_ES |
dc.description.references | Bonet, J., Meise, R., & Melikhov, S. N. (2007). A comparison of two different ways to define classes of ultradifferentiable functions. Bulletin of the Belgian Mathematical Society - Simon Stevin, 14(3). doi:10.36045/bbms/1190994204 | es_ES |
dc.description.references | Braun, R. W., Meise, R., & Taylor, B. A. (1990). Ultradifferentiable functions and Fourier analysis. Results in Mathematics, 17(3-4), 206-237. doi:10.1007/bf03322459 | es_ES |
dc.description.references | Fernández, C., Galbis, A., & Jornet, D. (2005). Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Mathematica, 167(2), 99-131. doi:10.4064/sm167-2-1 | es_ES |
dc.description.references | Gröchenig, K., & Zimmermann, G. (2004). Spaces of Test Functions via the STFT. Journal of Function Spaces and Applications, 2(1), 25-53. doi:10.1155/2004/498627 | es_ES |
dc.description.references | Juan-Huguet, J. (2012). A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, 208(1), 31-46. doi:10.4064/sm208-1-3 | es_ES |
dc.description.references | Langenbruch, M. (2005). Hermite functions and weighted spaces of generalized functions. manuscripta mathematica, 119(3), 269-285. doi:10.1007/s00229-005-0605-y | es_ES |
dc.description.references | Meise, R., & Taylor, B. A. (1988). Whitney’s extension theorem for ultradifferentiable functions of Beurling type. Arkiv för Matematik, 26(1-2), 265-287. doi:10.1007/bf02386123 | es_ES |
dc.description.references | Tuan, V. K. (1999). On the supports of functions. Numerical Functional Analysis and Optimization, 20(3-4), 387-394. doi:10.1080/01630569908816899 | es_ES |
dc.description.references | Wong, M. W. (2005). Weyl Transforms, the Heat Kernel and Green Function of a Degenerate Elliptic Operator. Annals of Global Analysis and Geometry, 28(3), 271-283. doi:10.1007/s10455-005-1148-x | es_ES |