- -

Real Paley-Wiener theorems in spaces of ultradifferentiable functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real Paley-Wiener theorems in spaces of ultradifferentiable functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boiti, Chiara es_ES
dc.contributor.author Jornet Casanova, David es_ES
dc.contributor.author Oliaro, Alessandro es_ES
dc.date.accessioned 2021-07-23T03:31:22Z
dc.date.available 2021-07-23T03:31:22Z
dc.date.issued 2020-03-01 es_ES
dc.identifier.issn 0022-1236 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169904
dc.description.abstract [EN] We develop real Paley-Wiener theorems for classes S-omega of ultradifferentiable functions and related L-p-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given. es_ES
dc.description.sponsorship The authors are grateful for the careful reading and the suggestions of the referee, that improved the paper. The authors were partially supported by the INdAM/GNAMPA Project 2017 Equazioni a Derivate Parziali, Analisi di Gabor ed Analisi Microlocale, by the Projects FAR 2014 and FAR 2017 (University of Ferrara), by the Project FFABR 2017 (MIUR). The research of the second author was partially supported by the project MTM2016-76647-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Functional Analysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Real Paley-Wiener theorems es_ES
dc.subject Weighted Schwartz classes es_ES
dc.subject Short-time Fourier transform es_ES
dc.subject Wigner transform es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Real Paley-Wiener theorems in spaces of ultradifferentiable functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfa.2019.108348 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FAR2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIUR//FFABR 2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FAR2014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Boiti, C.; Jornet Casanova, D.; Oliaro, A. (2020). Real Paley-Wiener theorems in spaces of ultradifferentiable functions. Journal of Functional Analysis. 278(4):1-45. https://doi.org/10.1016/j.jfa.2019.108348 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfa.2019.108348 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 45 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\428960 es_ES
dc.contributor.funder Università degli Studi di Ferrara es_ES
dc.contributor.funder Istituto Nazionale di Alta Matematica "F. Severi", Italia es_ES
dc.contributor.funder Ministero dell'Istruzione dell'Università e della Ricerca, Italia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references ANDERSEN, N. B. (2004). REAL PALEY–WIENER THEOREMS. Bulletin of the London Mathematical Society, 36(04), 504-508. doi:10.1112/s0024609304003108 es_ES
dc.description.references Andersen, N. B. (2014). EntireLp-functions of exponential type. Expositiones Mathematicae, 32(3), 199-220. doi:10.1016/j.exmath.2013.10.003 es_ES
dc.description.references Andersen, N. B., & de Jeu, M. (2010). Real Paley–Wiener theorems and local spectral radius formulas. Transactions of the American Mathematical Society, 362(07), 3613-3640. doi:10.1090/s0002-9947-10-05044-0 es_ES
dc.description.references Bang, H. H. (1990). A property of infinitely differentiable functions. Proceedings of the American Mathematical Society, 108(1), 73-73. doi:10.1090/s0002-9939-1990-1024259-9 es_ES
dc.description.references Björck, G. (1966). Linear partial differential operators and generalized distributions. Arkiv för Matematik, 6(4-5), 351-407. doi:10.1007/bf02590963 es_ES
dc.description.references Boiti, C., & Gallucci, E. (2017). The overdetermined Cauchy problem for $$\omega $$ ω -ultradifferentiable functions. manuscripta mathematica, 155(3-4), 419-448. doi:10.1007/s00229-017-0939-2 es_ES
dc.description.references Boiti, C., & Jornet, D. (2016). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(3), 891-919. doi:10.1007/s13398-016-0329-8 es_ES
dc.description.references Boiti, C., & Jornet, D. (2016). A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. Journal of Pseudo-Differential Operators and Applications, 8(2), 297-317. doi:10.1007/s11868-016-0163-y es_ES
dc.description.references Boiti, C., Jornet, D., & Juan-Huguet, J. (2014). Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients. Abstract and Applied Analysis, 2014, 1-17. doi:10.1155/2014/438716 es_ES
dc.description.references Boiti, C., Jornet, D., & Oliaro, A. (2017). Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. Journal of Mathematical Analysis and Applications, 446(1), 920-944. doi:10.1016/j.jmaa.2016.09.029 es_ES
dc.description.references Boiti, C., Jornet, D., & Oliaro, A. (2018). The Gabor wave front set in spaces of ultradifferentiable functions. Monatshefte für Mathematik, 188(2), 199-246. doi:10.1007/s00605-018-1242-3 es_ES
dc.description.references Bonet, J., Meise, R., & Melikhov, S. N. (2007). A comparison of two different ways to define classes of ultradifferentiable functions. Bulletin of the Belgian Mathematical Society - Simon Stevin, 14(3). doi:10.36045/bbms/1190994204 es_ES
dc.description.references Braun, R. W., Meise, R., & Taylor, B. A. (1990). Ultradifferentiable functions and Fourier analysis. Results in Mathematics, 17(3-4), 206-237. doi:10.1007/bf03322459 es_ES
dc.description.references Fernández, C., Galbis, A., & Jornet, D. (2005). Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Mathematica, 167(2), 99-131. doi:10.4064/sm167-2-1 es_ES
dc.description.references Gröchenig, K., & Zimmermann, G. (2004). Spaces of Test Functions via the STFT. Journal of Function Spaces and Applications, 2(1), 25-53. doi:10.1155/2004/498627 es_ES
dc.description.references Juan-Huguet, J. (2012). A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, 208(1), 31-46. doi:10.4064/sm208-1-3 es_ES
dc.description.references Langenbruch, M. (2005). Hermite functions and weighted spaces of generalized functions. manuscripta mathematica, 119(3), 269-285. doi:10.1007/s00229-005-0605-y es_ES
dc.description.references Meise, R., & Taylor, B. A. (1988). Whitney’s extension theorem for ultradifferentiable functions of Beurling type. Arkiv för Matematik, 26(1-2), 265-287. doi:10.1007/bf02386123 es_ES
dc.description.references Tuan, V. K. (1999). On the supports of functions. Numerical Functional Analysis and Optimization, 20(3-4), 387-394. doi:10.1080/01630569908816899 es_ES
dc.description.references Wong, M. W. (2005). Weyl Transforms, the Heat Kernel and Green Function of a Degenerate Elliptic Operator. Annals of Global Analysis and Geometry, 28(3), 271-283. doi:10.1007/s10455-005-1148-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem