- -

Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies

Mostrar el registro completo del ítem

Capilla Romá, MT.; Talavera Usano, CF.; Ginestar Peiro, D.; Verdú Martín, GJ. (2020). Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies. Journal of Computational and Applied Mathematics. 375:1-21. https://doi.org/10.1016/j.cam.2020.112814

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170074

Ficheros en el ítem

Metadatos del ítem

Título: Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies
Autor: Capilla Romá, Maria Teresa Talavera Usano, César Félix Ginestar Peiro, Damián Verdú Martín, Gumersindo Jesús
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The diffusion approximation to the time-dependent Boltzmann transport equation gives accurate results for traditional nuclear reactor designs, but new reactor designs and new fuel elements require neutron transport ...[+]
Palabras clave: Transient neutron transport equation , Spherical harmonics method , Multi-dimensional PL equations , Nodal collocation method , Implicit Euler method , C5 MOX transient benchmark
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Computational and Applied Mathematics. (issn: 0377-0427 )
DOI: 10.1016/j.cam.2020.112814
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cam.2020.112814
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/
info:eu-repo/grantAgreement/AEI//ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA/TERMOHIDRAULICA PANTHER/
Agradecimientos:
This work was partially supported by the Spanish Agencia Estatal de Investigacion under project ENE2017-89029-P-AR, and the Generalitat Valenciana under project PROMETEO/2018/035. The authors express their gratitude to the ...[+]
Tipo: Artículo

References

McClarren, R. G. (2010). Theoretical Aspects of the SimplifiedPnEquations. Transport Theory and Statistical Physics, 39(2-4), 73-109. doi:10.1080/00411450.2010.535088

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014 [+]
McClarren, R. G. (2010). Theoretical Aspects of the SimplifiedPnEquations. Transport Theory and Statistical Physics, 39(2-4), 73-109. doi:10.1080/00411450.2010.535088

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014

Heizler, S. I. (2010). Asymptotic Telegrapher’s Equation (P1) Approximation for the Transport Equation. Nuclear Science and Engineering, 166(1), 17-35. doi:10.13182/nse09-77

Larsen, E. W., Morel, J. E., & McGhee, J. M. (1996). Asymptotic Derivation of the MultigroupP1and SimplifiedPNEquations with Anisotropic Scattering. Nuclear Science and Engineering, 123(3), 328-342. doi:10.13182/nse123-328

Frank, M., Klar, A., Larsen, E. W., & Yasuda, S. (2007). Time-dependent simplified PN approximation to the equations of radiative transfer. Journal of Computational Physics, 226(2), 2289-2305. doi:10.1016/j.jcp.2007.07.009

Olbrant, E., Larsen, E. W., Frank, M., & Seibold, B. (2013). Asymptotic derivation and numerical investigation of time-dependent simplified equations. Journal of Computational Physics, 238, 315-336. doi:10.1016/j.jcp.2012.10.055

B.G. Carlson, G.I. Bell, Solution of the transport equation by the SN method, in: Proc. U.N. Intl. Conf. Peaceful Uses of Atomic Energy, 2nd Geneva P/2386, 1958.

Talamo, A. (2013). Numerical solution of the time dependent neutron transport equation by the method of the characteristics. Journal of Computational Physics, 240, 248-267. doi:10.1016/j.jcp.2012.12.020

Sjenitzer, B. L., & Hoogenboom, J. E. (2013). Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations. Nuclear Science and Engineering, 175(1), 94-107. doi:10.13182/nse12-44

Sjenitzer, B. L., Hoogenboom, J. E., Jiménez Escalante, J., & Sanchez Espinoza, V. (2015). Coupling of dynamic Monte Carlo with thermal-hydraulic feedback. Annals of Nuclear Energy, 76, 27-39. doi:10.1016/j.anucene.2014.09.018

Jo, Y., Cho, B., & Cho, N. Z. (2016). Nuclear Reactor Transient Analysis by Continuous-Energy Monte Carlo Calculation Based on Predictor-Corrector Quasi-Static Method. Nuclear Science and Engineering, 183(2), 229-246. doi:10.13182/nse15-100

Shaukat, N., Ryu, M., & Shim, H. J. (2017). Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark. Nuclear Engineering and Technology, 49(5), 920-927. doi:10.1016/j.net.2017.04.008

Hoffman, A. J., & Lee, J. C. (2016). A time-dependent neutron transport method of characteristics formulation with time derivative propagation. Journal of Computational Physics, 307, 696-714. doi:10.1016/j.jcp.2015.10.039

Ginestar, D., Verdú, G., Vidal, V., Bru, R., Marín, J., & Muñoz-Cobo, J. L. (1998). High order backward discretization of the neutron diffusion equation. Annals of Nuclear Energy, 25(1-3), 47-64. doi:10.1016/s0306-4549(97)00046-7

Goluoglu, S., & Dodds, H. L. (2001). A Time-Dependent, Three-Dimensional Neutron Transport Methodology. Nuclear Science and Engineering, 139(3), 248-261. doi:10.13182/nse01-a2235

Dulla, S., Mund, E. H., & Ravetto, P. (2008). The quasi-static method revisited. Progress in Nuclear Energy, 50(8), 908-920. doi:10.1016/j.pnucene.2008.04.009

Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7

Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2019). Modal methods for the neutron diffusion equation using different spatial modes. Progress in Nuclear Energy, 115, 181-193. doi:10.1016/j.pnucene.2019.03.040

Hébert, A. (1987). Development of the nodal collocation method for solving the neutron diffusion equation. Annals of Nuclear Energy, 14(10), 527-541. doi:10.1016/0306-4549(87)90074-0

Reed, W. H. (1972). Spherical Harmonic Solutions of the Neutron Transport Equation from Discrete Ordinate Codes. Nuclear Science and Engineering, 49(1), 10-19. doi:10.13182/nse72-a22523

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008

Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2016). Nodal collocation method for the multidimensional PL equations applied to neutron transport source problems. Annals of Nuclear Energy, 87, 89-100. doi:10.1016/j.anucene.2015.07.040

Morel, J. E., Adams, B. T., Noh, T., McGhee, J. M., Evans, T. M., & Urbatsch, T. J. (2006). Spatial discretizations for self-adjoint forms of the radiative transfer equations. Journal of Computational Physics, 214(1), 12-40. doi:10.1016/j.jcp.2005.09.017

Williams, M. M. R., Welch, J., & Eaton, M. D. (2015). Relationship of the SPN_AN method to the even-parity transport equation. Annals of Nuclear Energy, 81, 342-353. doi:10.1016/j.anucene.2015.03.014

Pautz, A., & Birkhofer, A. (2003). DORT-TD: A Transient Neutron Transport Code with Fully Implicit Time Integration. Nuclear Science and Engineering, 145(3), 299-319. doi:10.13182/nse03-a2385

Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8

Olson, K. R., & Henderson, D. L. (2004). Numerical benchmark solutions for time-dependent neutral particle transport in one-dimensional homogeneous media using integral transport. Annals of Nuclear Energy, 31(13), 1495-1537. doi:10.1016/j.anucene.2004.04.002

Hageman, L. A., & Yasinsky, J. B. (1969). Comparison of Alternating-Direction Time-Differencing Methods with Other Implicit Methods for the Solution of the Neutron Group-Diffusion Equations. Nuclear Science and Engineering, 38(1), 8-32. doi:10.13182/nse38-8

Aboanber, A. E., & Hamada, Y. M. (2009). Computation accuracy and efficiency of a power series analytic method for two- and three- space-dependent transient problems. Progress in Nuclear Energy, 51(3), 451-464. doi:10.1016/j.pnucene.2008.10.003

Capilla, M., Ginestar, D., & Verdú, G. (2009). Applications of the multidimensional equations to complex fuel assembly problems. Annals of Nuclear Energy, 36(10), 1624-1634. doi:10.1016/j.anucene.2009.08.008

Smith, K. S. (1986). Assembly homogenization techniques for light water reactor analysis. Progress in Nuclear Energy, 17(3), 303-335. doi:10.1016/0149-1970(86)90035-1

Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem