- -

Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capilla Romá, Maria Teresa es_ES
dc.contributor.author Talavera Usano, César Félix es_ES
dc.contributor.author Ginestar Peiro, Damián es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-07-24T03:33:05Z
dc.date.available 2021-07-24T03:33:05Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170074
dc.description.abstract [EN] The diffusion approximation to the time-dependent Boltzmann transport equation gives accurate results for traditional nuclear reactor designs, but new reactor designs and new fuel elements require neutron transport methods. We develop a numerical approximation to the time-dependent transport equation coupled to delayed neutron precursors based on the spherical harmonics P L equations, for odd L, and on the Backward Euler finite difference discretization of time. The resulting scheme can be written as a stationary form of diffusive second order PL equations. This allows a reduction by half to the number of unknowns and also to apply a nodal collocation method to the spatial discretization of the problem, using coarse spatial grids to further reduce memory requirements. This scheme is validated with several transient benchmarks, where the convergence properties are established and compared with the simplified PL approximation. A more realistic transient benchmark, based on the two-group C5 MOX problem, is finally introduced, showing the need of high order P L approximation for complex fuel geometries. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Agencia Estatal de Investigacion under project ENE2017-89029-P-AR, and the Generalitat Valenciana under project PROMETEO/2018/035. The authors express their gratitude to the anonymous reviewers for their suggestions and helpful comments. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Transient neutron transport equation es_ES
dc.subject Spherical harmonics method es_ES
dc.subject Multi-dimensional PL equations es_ES
dc.subject Nodal collocation method es_ES
dc.subject Implicit Euler method es_ES
dc.subject C5 MOX transient benchmark es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2020.112814 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA/TERMOHIDRAULICA PANTHER/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Capilla Romá, MT.; Talavera Usano, CF.; Ginestar Peiro, D.; Verdú Martín, GJ. (2020). Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies. Journal of Computational and Applied Mathematics. 375:1-21. https://doi.org/10.1016/j.cam.2020.112814 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2020.112814 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 375 es_ES
dc.relation.pasarela S\405095 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references McClarren, R. G. (2010). Theoretical Aspects of the SimplifiedPnEquations. Transport Theory and Statistical Physics, 39(2-4), 73-109. doi:10.1080/00411450.2010.535088 es_ES
dc.description.references Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004 es_ES
dc.description.references Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014 es_ES
dc.description.references Heizler, S. I. (2010). Asymptotic Telegrapher’s Equation (P1) Approximation for the Transport Equation. Nuclear Science and Engineering, 166(1), 17-35. doi:10.13182/nse09-77 es_ES
dc.description.references Larsen, E. W., Morel, J. E., & McGhee, J. M. (1996). Asymptotic Derivation of the MultigroupP1and SimplifiedPNEquations with Anisotropic Scattering. Nuclear Science and Engineering, 123(3), 328-342. doi:10.13182/nse123-328 es_ES
dc.description.references Frank, M., Klar, A., Larsen, E. W., & Yasuda, S. (2007). Time-dependent simplified PN approximation to the equations of radiative transfer. Journal of Computational Physics, 226(2), 2289-2305. doi:10.1016/j.jcp.2007.07.009 es_ES
dc.description.references Olbrant, E., Larsen, E. W., Frank, M., & Seibold, B. (2013). Asymptotic derivation and numerical investigation of time-dependent simplified equations. Journal of Computational Physics, 238, 315-336. doi:10.1016/j.jcp.2012.10.055 es_ES
dc.description.references B.G. Carlson, G.I. Bell, Solution of the transport equation by the SN method, in: Proc. U.N. Intl. Conf. Peaceful Uses of Atomic Energy, 2nd Geneva P/2386, 1958. es_ES
dc.description.references Talamo, A. (2013). Numerical solution of the time dependent neutron transport equation by the method of the characteristics. Journal of Computational Physics, 240, 248-267. doi:10.1016/j.jcp.2012.12.020 es_ES
dc.description.references Sjenitzer, B. L., & Hoogenboom, J. E. (2013). Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations. Nuclear Science and Engineering, 175(1), 94-107. doi:10.13182/nse12-44 es_ES
dc.description.references Sjenitzer, B. L., Hoogenboom, J. E., Jiménez Escalante, J., & Sanchez Espinoza, V. (2015). Coupling of dynamic Monte Carlo with thermal-hydraulic feedback. Annals of Nuclear Energy, 76, 27-39. doi:10.1016/j.anucene.2014.09.018 es_ES
dc.description.references Jo, Y., Cho, B., & Cho, N. Z. (2016). Nuclear Reactor Transient Analysis by Continuous-Energy Monte Carlo Calculation Based on Predictor-Corrector Quasi-Static Method. Nuclear Science and Engineering, 183(2), 229-246. doi:10.13182/nse15-100 es_ES
dc.description.references Shaukat, N., Ryu, M., & Shim, H. J. (2017). Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark. Nuclear Engineering and Technology, 49(5), 920-927. doi:10.1016/j.net.2017.04.008 es_ES
dc.description.references Hoffman, A. J., & Lee, J. C. (2016). A time-dependent neutron transport method of characteristics formulation with time derivative propagation. Journal of Computational Physics, 307, 696-714. doi:10.1016/j.jcp.2015.10.039 es_ES
dc.description.references Ginestar, D., Verdú, G., Vidal, V., Bru, R., Marín, J., & Muñoz-Cobo, J. L. (1998). High order backward discretization of the neutron diffusion equation. Annals of Nuclear Energy, 25(1-3), 47-64. doi:10.1016/s0306-4549(97)00046-7 es_ES
dc.description.references Goluoglu, S., & Dodds, H. L. (2001). A Time-Dependent, Three-Dimensional Neutron Transport Methodology. Nuclear Science and Engineering, 139(3), 248-261. doi:10.13182/nse01-a2235 es_ES
dc.description.references Dulla, S., Mund, E. H., & Ravetto, P. (2008). The quasi-static method revisited. Progress in Nuclear Energy, 50(8), 908-920. doi:10.1016/j.pnucene.2008.04.009 es_ES
dc.description.references Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7 es_ES
dc.description.references Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2019). Modal methods for the neutron diffusion equation using different spatial modes. Progress in Nuclear Energy, 115, 181-193. doi:10.1016/j.pnucene.2019.03.040 es_ES
dc.description.references Hébert, A. (1987). Development of the nodal collocation method for solving the neutron diffusion equation. Annals of Nuclear Energy, 14(10), 527-541. doi:10.1016/0306-4549(87)90074-0 es_ES
dc.description.references Reed, W. H. (1972). Spherical Harmonic Solutions of the Neutron Transport Equation from Discrete Ordinate Codes. Nuclear Science and Engineering, 49(1), 10-19. doi:10.13182/nse72-a22523 es_ES
dc.description.references Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008 es_ES
dc.description.references Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2016). Nodal collocation method for the multidimensional PL equations applied to neutron transport source problems. Annals of Nuclear Energy, 87, 89-100. doi:10.1016/j.anucene.2015.07.040 es_ES
dc.description.references Morel, J. E., Adams, B. T., Noh, T., McGhee, J. M., Evans, T. M., & Urbatsch, T. J. (2006). Spatial discretizations for self-adjoint forms of the radiative transfer equations. Journal of Computational Physics, 214(1), 12-40. doi:10.1016/j.jcp.2005.09.017 es_ES
dc.description.references Williams, M. M. R., Welch, J., & Eaton, M. D. (2015). Relationship of the SPN_AN method to the even-parity transport equation. Annals of Nuclear Energy, 81, 342-353. doi:10.1016/j.anucene.2015.03.014 es_ES
dc.description.references Pautz, A., & Birkhofer, A. (2003). DORT-TD: A Transient Neutron Transport Code with Fully Implicit Time Integration. Nuclear Science and Engineering, 145(3), 299-319. doi:10.13182/nse03-a2385 es_ES
dc.description.references Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 es_ES
dc.description.references Olson, K. R., & Henderson, D. L. (2004). Numerical benchmark solutions for time-dependent neutral particle transport in one-dimensional homogeneous media using integral transport. Annals of Nuclear Energy, 31(13), 1495-1537. doi:10.1016/j.anucene.2004.04.002 es_ES
dc.description.references Hageman, L. A., & Yasinsky, J. B. (1969). Comparison of Alternating-Direction Time-Differencing Methods with Other Implicit Methods for the Solution of the Neutron Group-Diffusion Equations. Nuclear Science and Engineering, 38(1), 8-32. doi:10.13182/nse38-8 es_ES
dc.description.references Aboanber, A. E., & Hamada, Y. M. (2009). Computation accuracy and efficiency of a power series analytic method for two- and three- space-dependent transient problems. Progress in Nuclear Energy, 51(3), 451-464. doi:10.1016/j.pnucene.2008.10.003 es_ES
dc.description.references Capilla, M., Ginestar, D., & Verdú, G. (2009). Applications of the multidimensional equations to complex fuel assembly problems. Annals of Nuclear Energy, 36(10), 1624-1634. doi:10.1016/j.anucene.2009.08.008 es_ES
dc.description.references Smith, K. S. (1986). Assembly homogenization techniques for light water reactor analysis. Progress in Nuclear Energy, 17(3), 303-335. doi:10.1016/0149-1970(86)90035-1 es_ES
dc.description.references Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem