Mostrar el registro sencillo del ítem
dc.contributor.author | Capilla Romá, Maria Teresa | es_ES |
dc.contributor.author | Talavera Usano, César Félix | es_ES |
dc.contributor.author | Ginestar Peiro, Damián | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2021-07-24T03:33:05Z | |
dc.date.available | 2021-07-24T03:33:05Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170074 | |
dc.description.abstract | [EN] The diffusion approximation to the time-dependent Boltzmann transport equation gives accurate results for traditional nuclear reactor designs, but new reactor designs and new fuel elements require neutron transport methods. We develop a numerical approximation to the time-dependent transport equation coupled to delayed neutron precursors based on the spherical harmonics P L equations, for odd L, and on the Backward Euler finite difference discretization of time. The resulting scheme can be written as a stationary form of diffusive second order PL equations. This allows a reduction by half to the number of unknowns and also to apply a nodal collocation method to the spatial discretization of the problem, using coarse spatial grids to further reduce memory requirements. This scheme is validated with several transient benchmarks, where the convergence properties are established and compared with the simplified PL approximation. A more realistic transient benchmark, based on the two-group C5 MOX problem, is finally introduced, showing the need of high order P L approximation for complex fuel geometries. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish Agencia Estatal de Investigacion under project ENE2017-89029-P-AR, and the Generalitat Valenciana under project PROMETEO/2018/035. The authors express their gratitude to the anonymous reviewers for their suggestions and helpful comments. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Transient neutron transport equation | es_ES |
dc.subject | Spherical harmonics method | es_ES |
dc.subject | Multi-dimensional PL equations | es_ES |
dc.subject | Nodal collocation method | es_ES |
dc.subject | Implicit Euler method | es_ES |
dc.subject | C5 MOX transient benchmark | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2020.112814 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA/TERMOHIDRAULICA PANTHER/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Capilla Romá, MT.; Talavera Usano, CF.; Ginestar Peiro, D.; Verdú Martín, GJ. (2020). Validation of the SHNC time-dependent transport code based on the spherical harmonics method for complex nuclear fuel assemblies. Journal of Computational and Applied Mathematics. 375:1-21. https://doi.org/10.1016/j.cam.2020.112814 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2020.112814 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 375 | es_ES |
dc.relation.pasarela | S\405095 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | McClarren, R. G. (2010). Theoretical Aspects of the SimplifiedPnEquations. Transport Theory and Statistical Physics, 39(2-4), 73-109. doi:10.1080/00411450.2010.535088 | es_ES |
dc.description.references | Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004 | es_ES |
dc.description.references | Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014 | es_ES |
dc.description.references | Heizler, S. I. (2010). Asymptotic Telegrapher’s Equation (P1) Approximation for the Transport Equation. Nuclear Science and Engineering, 166(1), 17-35. doi:10.13182/nse09-77 | es_ES |
dc.description.references | Larsen, E. W., Morel, J. E., & McGhee, J. M. (1996). Asymptotic Derivation of the MultigroupP1and SimplifiedPNEquations with Anisotropic Scattering. Nuclear Science and Engineering, 123(3), 328-342. doi:10.13182/nse123-328 | es_ES |
dc.description.references | Frank, M., Klar, A., Larsen, E. W., & Yasuda, S. (2007). Time-dependent simplified PN approximation to the equations of radiative transfer. Journal of Computational Physics, 226(2), 2289-2305. doi:10.1016/j.jcp.2007.07.009 | es_ES |
dc.description.references | Olbrant, E., Larsen, E. W., Frank, M., & Seibold, B. (2013). Asymptotic derivation and numerical investigation of time-dependent simplified equations. Journal of Computational Physics, 238, 315-336. doi:10.1016/j.jcp.2012.10.055 | es_ES |
dc.description.references | B.G. Carlson, G.I. Bell, Solution of the transport equation by the SN method, in: Proc. U.N. Intl. Conf. Peaceful Uses of Atomic Energy, 2nd Geneva P/2386, 1958. | es_ES |
dc.description.references | Talamo, A. (2013). Numerical solution of the time dependent neutron transport equation by the method of the characteristics. Journal of Computational Physics, 240, 248-267. doi:10.1016/j.jcp.2012.12.020 | es_ES |
dc.description.references | Sjenitzer, B. L., & Hoogenboom, J. E. (2013). Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations. Nuclear Science and Engineering, 175(1), 94-107. doi:10.13182/nse12-44 | es_ES |
dc.description.references | Sjenitzer, B. L., Hoogenboom, J. E., Jiménez Escalante, J., & Sanchez Espinoza, V. (2015). Coupling of dynamic Monte Carlo with thermal-hydraulic feedback. Annals of Nuclear Energy, 76, 27-39. doi:10.1016/j.anucene.2014.09.018 | es_ES |
dc.description.references | Jo, Y., Cho, B., & Cho, N. Z. (2016). Nuclear Reactor Transient Analysis by Continuous-Energy Monte Carlo Calculation Based on Predictor-Corrector Quasi-Static Method. Nuclear Science and Engineering, 183(2), 229-246. doi:10.13182/nse15-100 | es_ES |
dc.description.references | Shaukat, N., Ryu, M., & Shim, H. J. (2017). Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark. Nuclear Engineering and Technology, 49(5), 920-927. doi:10.1016/j.net.2017.04.008 | es_ES |
dc.description.references | Hoffman, A. J., & Lee, J. C. (2016). A time-dependent neutron transport method of characteristics formulation with time derivative propagation. Journal of Computational Physics, 307, 696-714. doi:10.1016/j.jcp.2015.10.039 | es_ES |
dc.description.references | Ginestar, D., Verdú, G., Vidal, V., Bru, R., Marín, J., & Muñoz-Cobo, J. L. (1998). High order backward discretization of the neutron diffusion equation. Annals of Nuclear Energy, 25(1-3), 47-64. doi:10.1016/s0306-4549(97)00046-7 | es_ES |
dc.description.references | Goluoglu, S., & Dodds, H. L. (2001). A Time-Dependent, Three-Dimensional Neutron Transport Methodology. Nuclear Science and Engineering, 139(3), 248-261. doi:10.13182/nse01-a2235 | es_ES |
dc.description.references | Dulla, S., Mund, E. H., & Ravetto, P. (2008). The quasi-static method revisited. Progress in Nuclear Energy, 50(8), 908-920. doi:10.1016/j.pnucene.2008.04.009 | es_ES |
dc.description.references | Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7 | es_ES |
dc.description.references | Carreño, A., Vidal-Ferràndiz, A., Ginestar, D., & Verdú, G. (2019). Modal methods for the neutron diffusion equation using different spatial modes. Progress in Nuclear Energy, 115, 181-193. doi:10.1016/j.pnucene.2019.03.040 | es_ES |
dc.description.references | Hébert, A. (1987). Development of the nodal collocation method for solving the neutron diffusion equation. Annals of Nuclear Energy, 14(10), 527-541. doi:10.1016/0306-4549(87)90074-0 | es_ES |
dc.description.references | Reed, W. H. (1972). Spherical Harmonic Solutions of the Neutron Transport Equation from Discrete Ordinate Codes. Nuclear Science and Engineering, 49(1), 10-19. doi:10.13182/nse72-a22523 | es_ES |
dc.description.references | Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2008). A nodal collocation approximation for the multi-dimensional equations – 2D applications. Annals of Nuclear Energy, 35(10), 1820-1830. doi:10.1016/j.anucene.2008.04.008 | es_ES |
dc.description.references | Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2016). Nodal collocation method for the multidimensional PL equations applied to neutron transport source problems. Annals of Nuclear Energy, 87, 89-100. doi:10.1016/j.anucene.2015.07.040 | es_ES |
dc.description.references | Morel, J. E., Adams, B. T., Noh, T., McGhee, J. M., Evans, T. M., & Urbatsch, T. J. (2006). Spatial discretizations for self-adjoint forms of the radiative transfer equations. Journal of Computational Physics, 214(1), 12-40. doi:10.1016/j.jcp.2005.09.017 | es_ES |
dc.description.references | Williams, M. M. R., Welch, J., & Eaton, M. D. (2015). Relationship of the SPN_AN method to the even-parity transport equation. Annals of Nuclear Energy, 81, 342-353. doi:10.1016/j.anucene.2015.03.014 | es_ES |
dc.description.references | Pautz, A., & Birkhofer, A. (2003). DORT-TD: A Transient Neutron Transport Code with Fully Implicit Time Integration. Nuclear Science and Engineering, 145(3), 299-319. doi:10.13182/nse03-a2385 | es_ES |
dc.description.references | Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 | es_ES |
dc.description.references | Olson, K. R., & Henderson, D. L. (2004). Numerical benchmark solutions for time-dependent neutral particle transport in one-dimensional homogeneous media using integral transport. Annals of Nuclear Energy, 31(13), 1495-1537. doi:10.1016/j.anucene.2004.04.002 | es_ES |
dc.description.references | Hageman, L. A., & Yasinsky, J. B. (1969). Comparison of Alternating-Direction Time-Differencing Methods with Other Implicit Methods for the Solution of the Neutron Group-Diffusion Equations. Nuclear Science and Engineering, 38(1), 8-32. doi:10.13182/nse38-8 | es_ES |
dc.description.references | Aboanber, A. E., & Hamada, Y. M. (2009). Computation accuracy and efficiency of a power series analytic method for two- and three- space-dependent transient problems. Progress in Nuclear Energy, 51(3), 451-464. doi:10.1016/j.pnucene.2008.10.003 | es_ES |
dc.description.references | Capilla, M., Ginestar, D., & Verdú, G. (2009). Applications of the multidimensional equations to complex fuel assembly problems. Annals of Nuclear Energy, 36(10), 1624-1634. doi:10.1016/j.anucene.2009.08.008 | es_ES |
dc.description.references | Smith, K. S. (1986). Assembly homogenization techniques for light water reactor analysis. Progress in Nuclear Energy, 17(3), 303-335. doi:10.1016/0149-1970(86)90035-1 | es_ES |
dc.description.references | Capilla, M. T., Talavera, C. F., Ginestar, D., & Verdú, G. (2018). Numerical analysis of the 2D C5G7 MOX benchmark using PL equations and a nodal collocation method. Annals of Nuclear Energy, 114, 32-41. doi:10.1016/j.anucene.2017.12.002 | es_ES |