- -

Design, Optimization, and Analysis of Supersonic Radial Turbines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design, Optimization, and Analysis of Supersonic Radial Turbines

Mostrar el registro completo del ítem

Inhestern, LB.; Braun, J.; Paniagua, G.; Serrano, J. (2020). Design, Optimization, and Analysis of Supersonic Radial Turbines. Journal of Engineering for Gas Turbines and Power. 142(3):1-12. https://doi.org/10.1115/1.4044972

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170079

Ficheros en el ítem

Metadatos del ítem

Título: Design, Optimization, and Analysis of Supersonic Radial Turbines
Autor: Inhestern, Lukas Benjamin Braun, James Paniagua, Guillermo Serrano, J.R.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] New compact engine architectures such as pressure gain combustion require ad hoc turbomachinery to ensure an adequate range of operation with high performance. A critical factor for supersonic turbines is to ensure ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Engineering for Gas Turbines and Power. (issn: 0742-4795 )
DOI: 10.1115/1.4044972
Editorial:
ASME International
Versión del editor: https://doi.org/10.1115/1.4044972
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/
Agradecimientos:
National Energy Technology Laboratory (Faculty Research Participation Program) (Funder ID: 10.13039/100013165). Spanish Ministry of Economy and Competitiveness (Grant No. TRA2016-7918-R). Universitat Politecnica de Valencia ...[+]
Tipo: Artículo

References

Sousa, J., Braun, J., & Paniagua, G. (2017). Development of a fast evaluation tool for rotating detonation combustors. Applied Mathematical Modelling, 52, 42-52. doi:10.1016/j.apm.2017.07.019

Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic Cycle Analysis of Pulse Detonation Engines. Journal of Propulsion and Power, 18(1), 68-76. doi:10.2514/2.5899

Braun, J., Saracoglu, B. H., & Paniagua, G. (2017). Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles. Journal of Propulsion and Power, 33(1), 121-130. doi:10.2514/1.b36164 [+]
Sousa, J., Braun, J., & Paniagua, G. (2017). Development of a fast evaluation tool for rotating detonation combustors. Applied Mathematical Modelling, 52, 42-52. doi:10.1016/j.apm.2017.07.019

Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic Cycle Analysis of Pulse Detonation Engines. Journal of Propulsion and Power, 18(1), 68-76. doi:10.2514/2.5899

Braun, J., Saracoglu, B. H., & Paniagua, G. (2017). Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles. Journal of Propulsion and Power, 33(1), 121-130. doi:10.2514/1.b36164

Nakagami, S., Matsuoka, K., Kasahara, J., Kumazawa, Y., Fujii, J., Matsuo, A., & Funaki, I. (2017). Experimental Visualization of the Structure of Rotating Detonation Waves in a Disk-Shaped Combustor. Journal of Propulsion and Power, 33(1), 80-88. doi:10.2514/1.b36084

Zhou, R., & Wang, J.-P. (2013). Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves, 23(5), 461-472. doi:10.1007/s00193-013-0440-0

Fievisohn, R. T., & Yu, K. H. (2017). Steady-State Analysis of Rotating Detonation Engine Flowfields with the Method of Characteristics. Journal of Propulsion and Power, 33(1), 89-99. doi:10.2514/1.b36103

Paniagua, G., Iorio, M. C., Vinha, N., & Sousa, J. (2014). Design and analysis of pioneering high supersonic axial turbines. International Journal of Mechanical Sciences, 89, 65-77. doi:10.1016/j.ijmecsci.2014.08.014

Sousa, J., Paniagua, G., & Collado Morata, E. (2017). Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Applied Energy, 195, 247-256. doi:10.1016/j.apenergy.2017.03.045

Liu, Z., Braun, J., & Paniagua, G. (2018). Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor. Journal of Engineering for Gas Turbines and Power, 141(3). doi:10.1115/1.4040815

Paniagua, G., Yasa, T., de la Loma, A., Castillon, L., & Coton, T. (2008). Unsteady Strong Shock Interactions in a Transonic Turbine: Experimental and Numerical Analysis. Journal of Propulsion and Power, 24(4), 722-731. doi:10.2514/1.34774

Verstraete, T., Alsalihi, Z., & Van den Braembussche, R. A. (2010). Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications. Journal of Turbomachinery, 132(3). doi:10.1115/1.3144162

Braun, J., Sousa, J., & Pekardan, C. (2017). Aerodynamic Design and Analysis of the Hyperloop. AIAA Journal, 55(12), 4053-4060. doi:10.2514/1.j055634

Anand, V., & Gutmark, E. (2018). Rotating Detonation Combustor Research at the University of Cincinnati. Flow, Turbulence and Combustion, 101(3), 869-893. doi:10.1007/s10494-018-9934-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem