Mostrar el registro sencillo del ítem
dc.contributor.author | Inhestern, Lukas Benjamin | es_ES |
dc.contributor.author | Braun, James | es_ES |
dc.contributor.author | Paniagua, Guillermo | es_ES |
dc.contributor.author | Serrano, J.R. | es_ES |
dc.date.accessioned | 2021-07-24T03:33:28Z | |
dc.date.available | 2021-07-24T03:33:28Z | |
dc.date.issued | 2020-03-01 | es_ES |
dc.identifier.issn | 0742-4795 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170079 | |
dc.description.abstract | [EN] New compact engine architectures such as pressure gain combustion require ad hoc turbomachinery to ensure an adequate range of operation with high performance. A critical factor for supersonic turbines is to ensure the starting of the flow passages, which limits the flow turning and airfoil thickness. Radial outflow turbines inherently increase the cross section along the flow path, which holds great potential for high turning of supersonic flow with a low stage number and guarantees a compact design. First, the preliminary design space is described. Afterward a differential evolution multi-objective optimization with 12 geometrical design parameters is deducted. With the design tool autoblade 10.1, 768 geometries were generated and hub, shroud, and blade camber line were designed by means of Bezier curves. Outlet radius, passage height, and axial location of the outlet were design variables as well. Structured meshes with around 3.7 x 10(6) cells per passage were generated. Steady three-dimensional (3D) Reynolds-averaged Navier-Stokes (RANS) simulations, enclosed by the k-omega shear stress transport turbulence model were solved by the commercial solver CFD++. The geometry was optimized toward low entropy and high-power output. To prove the functionality of the new turbine concept and optimization, a full wheel unsteady RANS simulation of the optimized geometry exposed to a nozzled rotating detonation combustor (RDC) has been performed and the advantageous flow patterns of the optimization were also observed during transient operation. | es_ES |
dc.description.sponsorship | National Energy Technology Laboratory (Faculty Research Participation Program) (Funder ID: 10.13039/100013165). Spanish Ministry of Economy and Competitiveness (Grant No. TRA2016-7918-R). Universitat Politecnica de Valencia (Travel Grant). U.S. Department of Energy (Part-Time Faculty Appointment, Funder ID: 10.13039/100000015) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | ASME International | es_ES |
dc.relation.ispartof | Journal of Engineering for Gas Turbines and Power | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Design, Optimization, and Analysis of Supersonic Radial Turbines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1115/1.4044972 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Inhestern, LB.; Braun, J.; Paniagua, G.; Serrano, J. (2020). Design, Optimization, and Analysis of Supersonic Radial Turbines. Journal of Engineering for Gas Turbines and Power. 142(3):1-12. https://doi.org/10.1115/1.4044972 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1115/1.4044972 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 142 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\408263 | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Energy Technology Laboratory, EEUU | es_ES |
dc.description.references | Sousa, J., Braun, J., & Paniagua, G. (2017). Development of a fast evaluation tool for rotating detonation combustors. Applied Mathematical Modelling, 52, 42-52. doi:10.1016/j.apm.2017.07.019 | es_ES |
dc.description.references | Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic Cycle Analysis of Pulse Detonation Engines. Journal of Propulsion and Power, 18(1), 68-76. doi:10.2514/2.5899 | es_ES |
dc.description.references | Braun, J., Saracoglu, B. H., & Paniagua, G. (2017). Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles. Journal of Propulsion and Power, 33(1), 121-130. doi:10.2514/1.b36164 | es_ES |
dc.description.references | Nakagami, S., Matsuoka, K., Kasahara, J., Kumazawa, Y., Fujii, J., Matsuo, A., & Funaki, I. (2017). Experimental Visualization of the Structure of Rotating Detonation Waves in a Disk-Shaped Combustor. Journal of Propulsion and Power, 33(1), 80-88. doi:10.2514/1.b36084 | es_ES |
dc.description.references | Zhou, R., & Wang, J.-P. (2013). Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves, 23(5), 461-472. doi:10.1007/s00193-013-0440-0 | es_ES |
dc.description.references | Fievisohn, R. T., & Yu, K. H. (2017). Steady-State Analysis of Rotating Detonation Engine Flowfields with the Method of Characteristics. Journal of Propulsion and Power, 33(1), 89-99. doi:10.2514/1.b36103 | es_ES |
dc.description.references | Paniagua, G., Iorio, M. C., Vinha, N., & Sousa, J. (2014). Design and analysis of pioneering high supersonic axial turbines. International Journal of Mechanical Sciences, 89, 65-77. doi:10.1016/j.ijmecsci.2014.08.014 | es_ES |
dc.description.references | Sousa, J., Paniagua, G., & Collado Morata, E. (2017). Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Applied Energy, 195, 247-256. doi:10.1016/j.apenergy.2017.03.045 | es_ES |
dc.description.references | Liu, Z., Braun, J., & Paniagua, G. (2018). Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor. Journal of Engineering for Gas Turbines and Power, 141(3). doi:10.1115/1.4040815 | es_ES |
dc.description.references | Paniagua, G., Yasa, T., de la Loma, A., Castillon, L., & Coton, T. (2008). Unsteady Strong Shock Interactions in a Transonic Turbine: Experimental and Numerical Analysis. Journal of Propulsion and Power, 24(4), 722-731. doi:10.2514/1.34774 | es_ES |
dc.description.references | Verstraete, T., Alsalihi, Z., & Van den Braembussche, R. A. (2010). Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications. Journal of Turbomachinery, 132(3). doi:10.1115/1.3144162 | es_ES |
dc.description.references | Braun, J., Sousa, J., & Pekardan, C. (2017). Aerodynamic Design and Analysis of the Hyperloop. AIAA Journal, 55(12), 4053-4060. doi:10.2514/1.j055634 | es_ES |
dc.description.references | Anand, V., & Gutmark, E. (2018). Rotating Detonation Combustor Research at the University of Cincinnati. Flow, Turbulence and Combustion, 101(3), 869-893. doi:10.1007/s10494-018-9934-2 | es_ES |