- -

#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection

Mostrar el registro completo del ítem

Lai, M.; Patti, V.; Ruffo, G.; Rosso, P. (2020). #Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection. Journal of Intelligent & Fuzzy Systems. 39(2):2341-2352. https://doi.org/10.3233/JIFS-179895

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170080

Ficheros en el ítem

Metadatos del ítem

Título: #Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection
Autor: Lai, Mirko Patti, Viviana Ruffo, Giancarlo Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight ...[+]
Palabras clave: Stance detection , Twitter , Brexit , NLP , Community detection
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Intelligent & Fuzzy Systems. (issn: 1064-1246 )
DOI: 10.3233/JIFS-179895
Editorial:
IOS Press
Versión del editor: https://doi.org/10.3233/JIFS-179895
Código del Proyecto:
info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/
Agradecimientos:
The work of P. Rosso was partially funded by the Spanish MICINN under the research projects MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech(PGC2018-096212-B-C31) and ...[+]
Tipo: Artículo

References

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008

Deitrick, W., & Hu, W. (2013). Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks. Journal of Data Analysis and Information Processing, 01(03), 19-29. doi:10.4236/jdaip.2013.13004

Duranti A. and Goodwin C. , Rethinking context: Language as an interactive phenomenon, Cambridge University Press, (1992). [+]
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008

Deitrick, W., & Hu, W. (2013). Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks. Journal of Data Analysis and Information Processing, 01(03), 19-29. doi:10.4236/jdaip.2013.13004

Duranti A. and Goodwin C. , Rethinking context: Language as an interactive phenomenon, Cambridge University Press, (1992).

Evans A. , Stance and identity in Twitter hashtags, Language@ Internet 13(1) (2016).

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. doi:10.1016/j.physrep.2009.11.002

Gelman, A., & King, G. (1993). Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable? British Journal of Political Science, 23(4), 409-451. doi:10.1017/s0007123400006682

Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling Users’ Activity on Twitter Networks: Validation of Dunbar’s Number. PLoS ONE, 6(8), e22656. doi:10.1371/journal.pone.0022656

González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782. doi:10.1038/nature06958

Hernández-Castañeda, Á., Calvo, H., & Gambino, O. J. (2018). Impact of polarity in deception detection. Journal of Intelligent & Fuzzy Systems, 35(1), 549-558. doi:10.3233/jifs-169610

Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., … Van Alstyne, M. (2009). Computational Social Science. Science, 323(5915), 721-723. doi:10.1126/science.1167742

Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433

Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x

Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011

Pennebaker J.W. , Francis M.E. and Booth R.J. , Linguistic Inquiry and Word Count: LIWC 2001, Mahway: Lawrence Erlbaum Associates 71 (2001).

Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035

Theocharis, Y., & Lowe, W. (2015). Does Facebook increase political participation? Evidence from a field experiment. Information, Communication & Society, 19(10), 1465-1486. doi:10.1080/1369118x.2015.1119871

Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem