- -

#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

#Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lai, Mirko es_ES
dc.contributor.author Patti, Viviana es_ES
dc.contributor.author Ruffo, Giancarlo es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2021-07-24T03:33:34Z
dc.date.available 2021-07-24T03:33:34Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1064-1246 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170080
dc.description.abstract [EN] Interest has grown around the classification of stance that users assume within online debates in recent years. Stance has been usually addressed by considering users posts in isolation, while social studies highlight that social communities may contribute to influence users¿ opinion. Furthermore, stance should be studied in a diachronic perspective, since it could help to shed light on users¿ opinion shift dynamics that can be recorded during the debate. We analyzed the political discussion in UK about the BREXIT referendum on Twitter, proposing a novel approach and annotation schema for stance detection, with the main aim of investigating the role of features related to social network community and diachronic stance evolution. Classification experiments show that such features provide very useful clues for detecting stance. es_ES
dc.description.sponsorship The work of P. Rosso was partially funded by the Spanish MICINN under the research projects MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech(PGC2018-096212-B-C31) and PROMETEO/2019/121 (DeepPattern) of the Generalitat Valenciana. The work of V. Patti and G. Ruffo was partially funded by Progetto di Ateneo/CSP 2016 Immigrants, Hate and Prejudice in Social Media (S1618 L2 BOSC 01). es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof Journal of Intelligent & Fuzzy Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stance detection es_ES
dc.subject Twitter es_ES
dc.subject Brexit es_ES
dc.subject NLP es_ES
dc.subject Community detection es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title #Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/JIFS-179895 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121/ES/Deep learning for adaptative and multimodal interaction in pattern recognition/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Lai, M.; Patti, V.; Ruffo, G.; Rosso, P. (2020). #Brexit: Leave or Remain? The Role of User's Community and Diachronic Evolution on Stance Detection. Journal of Intelligent & Fuzzy Systems. 39(2):2341-2352. https://doi.org/10.3233/JIFS-179895 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3233/JIFS-179895 es_ES
dc.description.upvformatpinicio 2341 es_ES
dc.description.upvformatpfin 2352 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\434271 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Università degli Studi di Torino es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008 es_ES
dc.description.references Deitrick, W., & Hu, W. (2013). Mutually Enhancing Community Detection and Sentiment Analysis on Twitter Networks. Journal of Data Analysis and Information Processing, 01(03), 19-29. doi:10.4236/jdaip.2013.13004 es_ES
dc.description.references Duranti A. and Goodwin C. , Rethinking context: Language as an interactive phenomenon, Cambridge University Press, (1992). es_ES
dc.description.references Evans A. , Stance and identity in Twitter hashtags, Language@ Internet 13(1) (2016). es_ES
dc.description.references Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. doi:10.1016/j.physrep.2009.11.002 es_ES
dc.description.references Gelman, A., & King, G. (1993). Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable? British Journal of Political Science, 23(4), 409-451. doi:10.1017/s0007123400006682 es_ES
dc.description.references Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling Users’ Activity on Twitter Networks: Validation of Dunbar’s Number. PLoS ONE, 6(8), e22656. doi:10.1371/journal.pone.0022656 es_ES
dc.description.references González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782. doi:10.1038/nature06958 es_ES
dc.description.references Hernández-Castañeda, Á., Calvo, H., & Gambino, O. J. (2018). Impact of polarity in deception detection. Journal of Intelligent & Fuzzy Systems, 35(1), 549-558. doi:10.3233/jifs-169610 es_ES
dc.description.references Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., … Van Alstyne, M. (2009). Computational Social Science. Science, 323(5915), 721-723. doi:10.1126/science.1167742 es_ES
dc.description.references Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and Sentiment in Tweets. ACM Transactions on Internet Technology, 17(3), 1-23. doi:10.1145/3003433 es_ES
dc.description.references Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x es_ES
dc.description.references Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011 es_ES
dc.description.references Pennebaker J.W. , Francis M.E. and Booth R.J. , Linguistic Inquiry and Word Count: LIWC 2001, Mahway: Lawrence Erlbaum Associates 71 (2001). es_ES
dc.description.references Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035 es_ES
dc.description.references Theocharis, Y., & Lowe, W. (2015). Does Facebook increase political participation? Evidence from a field experiment. Information, Communication & Society, 19(10), 1465-1486. doi:10.1080/1369118x.2015.1119871 es_ES
dc.description.references Whissell, C. (2009). Using the Revised Dictionary of Affect in Language to Quantify the Emotional Undertones of Samples of Natural Language. Psychological Reports, 105(2), 509-521. doi:10.2466/pr0.105.2.509-521 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem