- -

A deep learning model to predict lower temperatures in agriculture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A deep learning model to predict lower temperatures in agriculture

Mostrar el registro completo del ítem

Guillén-Navarro, MA.; Martínez-España, R.; Llanes, A.; Bueno-Crespo, A.; Cecilia-Canales, JM. (2020). A deep learning model to predict lower temperatures in agriculture. Journal of Ambient Intelligence and Smart Environments. 12(1):21-34. https://doi.org/10.3233/AIS-200546

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170274

Ficheros en el ítem

Metadatos del ítem

Título: A deep learning model to predict lower temperatures in agriculture
Autor: Guillén-Navarro, Miguel A. Martínez-España, Raquel Llanes, Antonio Bueno-Crespo, Andrés Cecilia-Canales, José María
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Deep learning techniques provide a novel framework for prediction and classification in decision-making procedures that are widely applied in different fields. Precision agriculture is one of these fields where the ...[+]
Palabras clave: Deep learning , LSTM , Precision agriculture , IoT
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Ambient Intelligence and Smart Environments. (issn: 1876-1364 )
DOI: 10.3233/AIS-200546
Editorial:
IOS Press
Versión del editor: https://doi.org/10.3233/AIS-200546
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/
info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/
Agradecimientos:
This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities ...[+]
Tipo: Artículo

References

Abdullahi, H. S., Sheriff, R. E., & Mahieddine, F. (2017). Convolution neural network in precision agriculture for plant image recognition and classification. 2017 Seventh International Conference on Innovative Computing Technology (INTECH). doi:10.1109/intech.2017.8102436

K.A. Al-Gaadi, A.A. Hassaballa, E. Tola, A.G. Kayad, R. Madugundu, B. Alblewi and F. Assiri, Prediction of potato crop yield using precision agriculture techniques, PLoS ONE 11(9) (2016), e0162219.

Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A., & Nuttall, J. G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, 109-119. doi:10.1016/j.fcr.2014.11.010 [+]
Abdullahi, H. S., Sheriff, R. E., & Mahieddine, F. (2017). Convolution neural network in precision agriculture for plant image recognition and classification. 2017 Seventh International Conference on Innovative Computing Technology (INTECH). doi:10.1109/intech.2017.8102436

K.A. Al-Gaadi, A.A. Hassaballa, E. Tola, A.G. Kayad, R. Madugundu, B. Alblewi and F. Assiri, Prediction of potato crop yield using precision agriculture techniques, PLoS ONE 11(9) (2016), e0162219.

Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A., & Nuttall, J. G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, 109-119. doi:10.1016/j.fcr.2014.11.010

Bendre, M. R., Thool, R. C., & Thool, V. R. (2015). Big data in precision agriculture: Weather forecasting for future farming. 2015 1st International Conference on Next Generation Computing Technologies (NGCT). doi:10.1109/ngct.2015.7375220

Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192-213. doi:10.1016/j.ins.2011.12.028

Brahim-Belhouari, S., & Bermak, A. (2004). Gaussian process for nonstationary time series prediction. Computational Statistics & Data Analysis, 47(4), 705-712. doi:10.1016/j.csda.2004.02.006

D. Bretreger, J. Quijano, J. Awad et al., Monitoring irrigation volumes using climate data and remote sensing observations, in: Hydrology and Water Resources Symposium (HWRS 2018): Water and Communities, Engineers Australia, 2018, pp. 112–123.

Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting. Springer Texts in Statistics. doi:10.1007/978-3-319-29854-2

Chen, S. W., Shivakumar, S. S., Dcunha, S., Das, J., Okon, E., Qu, C., … Kumar, V. (2017). Counting Apples and Oranges With Deep Learning: A Data-Driven Approach. IEEE Robotics and Automation Letters, 2(2), 781-788. doi:10.1109/lra.2017.2651944

I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

Guillén‐Navarro, M. A., Martínez‐España, R., López, B., & Cecilia, J. M. (2019). A high‐performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation: Practice and Experience, 33(2). doi:10.1002/cpe.5299

Guillen-Navarro, M. A., Pereniguez-Garcia, F., & Martinez-Espana, R. (2017). IoT-based System to Forecast Crop Frost. 2017 International Conference on Intelligent Environments (IE). doi:10.1109/ie.2017.38

Haider, S., Naqvi, S., Akram, T., Umar, G., Shahzad, A., Sial, M., … Kamran, M. (2019). LSTM Neural Network Based Forecasting Model for Wheat Production in Pakistan. Agronomy, 9(2), 72. doi:10.3390/agronomy9020072

Harun, A. N., Kassim, M. R. M., Mat, I., & Ramli, S. S. (2015). Precision irrigation using Wireless Sensor Network. 2015 International Conference on Smart Sensors and Application (ICSSA). doi:10.1109/icssa.2015.7322513

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735

S. Hochreiter and J. Schmidhuber, LSTM can solve hard long time lag problems, in: Advances in Neural Information Processing Systems, 1997, pp. 473–479.

Huang, R., Zhang, C., Huang, J., Zhu, D., Wang, L., & Liu, J. (2015). Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data. Remote Sensing, 7(7), 8728-8756. doi:10.3390/rs70708728

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. doi:10.1016/j.compag.2018.02.016

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-Runoff modelling using Long-Short-Term-Memory (LSTM) networks. doi:10.5194/hess-2018-247

Mahlein, A.-K. (2016). Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Disease, 100(2), 241-251. doi:10.1094/pdis-03-15-0340-fe

Milioto, A., Lottes, P., & Stachniss, C. (2017). REAL-TIME BLOB-WISE SUGAR BEETS VS WEEDS CLASSIFICATION FOR MONITORING FIELDS USING CONVOLUTIONAL NEURAL NETWORKS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W3, 41-48. doi:10.5194/isprs-annals-iv-2-w3-41-2017

Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., & Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225. doi:10.1016/j.compag.2015.08.008

Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R. L., & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57-65. doi:10.1016/j.compag.2015.11.018

Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technology, 8, 61-69. doi:10.1016/j.protcy.2013.11.010

Pujari, J. D., Yakkundimath, R., & Byadgi, A. S. (2015). Image Processing Based Detection of Fungal Diseases in Plants. Procedia Computer Science, 46, 1802-1808. doi:10.1016/j.procs.2015.02.137

Ray, P. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9(4), 395-420. doi:10.3233/ais-170440

Salman, A. G., Heryadi, Y., Abdurahman, E., & Suparta, W. (2018). Single Layer & Multi-layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting. Procedia Computer Science, 135, 89-98. doi:10.1016/j.procs.2018.08.153

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003

Shareef, Z., & Reddy, S. R. N. (2018). Wireless sensor network for aquaculture: Review, survey, and case study of aquaculture practices in western Godavari region. Journal of Ambient Intelligence and Smart Environments, 10(5), 409-423. doi:10.3233/ais-180498

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Computational Intelligence and Neuroscience, 2016, 1-11. doi:10.1155/2016/3289801

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. doi:10.1016/j.agsy.2017.01.023

Akram, M., & El, C. (2016). Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks. International Journal of Computer Applications, 143(11), 7-11. doi:10.5120/ijca2016910497

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712. doi:10.1007/s11119-012-9274-5

Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918-929. doi:10.1016/j.jhydrol.2018.04.065

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113-132. doi:10.1016/s0168-1699(02)00096-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem