- -

A deep learning model to predict lower temperatures in agriculture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A deep learning model to predict lower temperatures in agriculture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guillén-Navarro, Miguel A. es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Llanes, Antonio es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2021-07-27T03:37:33Z
dc.date.available 2021-07-27T03:37:33Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1876-1364 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170274
dc.description.abstract [EN] Deep learning techniques provide a novel framework for prediction and classification in decision-making procedures that are widely applied in different fields. Precision agriculture is one of these fields where the use of decision-making technologies provides better production with better costs and a greater benefit for farmers. This paper develops an intelligent framework based on a deep learning model for early prediction of crop frost to help farmers activate anti-frost techniques to save the crop. This model is based on a long short-term memory (LSTM) model and it is designed to predict low temperatures. The model is based on information from an IoT infrastructure deployed on two plots in Murcia (Southeast of Spain). Three experiments are performed; a cross validation to validate the model from the most pessimistic point of view, a validation of 24 consecutive hours of temperatures, in order to know 24 hours before the possible temperature drop and a comparison with two traditional time series prediction techniques, namely Auto Regressive Integrated Moving Average and the Gaussian process. The results obtained are satisfactory, being better the results of the LSTM, obtaining an average quadratic error of less than a Celsius degree and a determination coefficient R-2 greater than 0.95. es_ES
dc.description.sponsorship This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants TIN2016-78799-P (AEI/FEDER, UE) and RTC-2017-6389-5. es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof Journal of Ambient Intelligence and Smart Environments es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deep learning es_ES
dc.subject LSTM es_ES
dc.subject Precision agriculture es_ES
dc.subject IoT es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A deep learning model to predict lower temperatures in agriculture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/AIS-200546 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Guillén-Navarro, MA.; Martínez-España, R.; Llanes, A.; Bueno-Crespo, A.; Cecilia-Canales, JM. (2020). A deep learning model to predict lower temperatures in agriculture. Journal of Ambient Intelligence and Smart Environments. 12(1):21-34. https://doi.org/10.3233/AIS-200546 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3233/AIS-200546 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 34 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\404367 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Abdullahi, H. S., Sheriff, R. E., & Mahieddine, F. (2017). Convolution neural network in precision agriculture for plant image recognition and classification. 2017 Seventh International Conference on Innovative Computing Technology (INTECH). doi:10.1109/intech.2017.8102436 es_ES
dc.description.references K.A. Al-Gaadi, A.A. Hassaballa, E. Tola, A.G. Kayad, R. Madugundu, B. Alblewi and F. Assiri, Prediction of potato crop yield using precision agriculture techniques, PLoS ONE 11(9) (2016), e0162219. es_ES
dc.description.references Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A., & Nuttall, J. G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, 109-119. doi:10.1016/j.fcr.2014.11.010 es_ES
dc.description.references Bendre, M. R., Thool, R. C., & Thool, V. R. (2015). Big data in precision agriculture: Weather forecasting for future farming. 2015 1st International Conference on Next Generation Computing Technologies (NGCT). doi:10.1109/ngct.2015.7375220 es_ES
dc.description.references Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192-213. doi:10.1016/j.ins.2011.12.028 es_ES
dc.description.references Brahim-Belhouari, S., & Bermak, A. (2004). Gaussian process for nonstationary time series prediction. Computational Statistics & Data Analysis, 47(4), 705-712. doi:10.1016/j.csda.2004.02.006 es_ES
dc.description.references D. Bretreger, J. Quijano, J. Awad et al., Monitoring irrigation volumes using climate data and remote sensing observations, in: Hydrology and Water Resources Symposium (HWRS 2018): Water and Communities, Engineers Australia, 2018, pp. 112–123. es_ES
dc.description.references Brockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting. Springer Texts in Statistics. doi:10.1007/978-3-319-29854-2 es_ES
dc.description.references Chen, S. W., Shivakumar, S. S., Dcunha, S., Das, J., Okon, E., Qu, C., … Kumar, V. (2017). Counting Apples and Oranges With Deep Learning: A Data-Driven Approach. IEEE Robotics and Automation Letters, 2(2), 781-788. doi:10.1109/lra.2017.2651944 es_ES
dc.description.references I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016. es_ES
dc.description.references Guillén‐Navarro, M. A., Martínez‐España, R., López, B., & Cecilia, J. M. (2019). A high‐performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation: Practice and Experience, 33(2). doi:10.1002/cpe.5299 es_ES
dc.description.references Guillen-Navarro, M. A., Pereniguez-Garcia, F., & Martinez-Espana, R. (2017). IoT-based System to Forecast Crop Frost. 2017 International Conference on Intelligent Environments (IE). doi:10.1109/ie.2017.38 es_ES
dc.description.references Haider, S., Naqvi, S., Akram, T., Umar, G., Shahzad, A., Sial, M., … Kamran, M. (2019). LSTM Neural Network Based Forecasting Model for Wheat Production in Pakistan. Agronomy, 9(2), 72. doi:10.3390/agronomy9020072 es_ES
dc.description.references Harun, A. N., Kassim, M. R. M., Mat, I., & Ramli, S. S. (2015). Precision irrigation using Wireless Sensor Network. 2015 International Conference on Smart Sensors and Application (ICSSA). doi:10.1109/icssa.2015.7322513 es_ES
dc.description.references Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 es_ES
dc.description.references S. Hochreiter and J. Schmidhuber, LSTM can solve hard long time lag problems, in: Advances in Neural Information Processing Systems, 1997, pp. 473–479. es_ES
dc.description.references Huang, R., Zhang, C., Huang, J., Zhu, D., Wang, L., & Liu, J. (2015). Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data. Remote Sensing, 7(7), 8728-8756. doi:10.3390/rs70708728 es_ES
dc.description.references Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. doi:10.1016/j.compag.2018.02.016 es_ES
dc.description.references Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-Runoff modelling using Long-Short-Term-Memory (LSTM) networks. doi:10.5194/hess-2018-247 es_ES
dc.description.references Mahlein, A.-K. (2016). Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Disease, 100(2), 241-251. doi:10.1094/pdis-03-15-0340-fe es_ES
dc.description.references Milioto, A., Lottes, P., & Stachniss, C. (2017). REAL-TIME BLOB-WISE SUGAR BEETS VS WEEDS CLASSIFICATION FOR MONITORING FIELDS USING CONVOLUTIONAL NEURAL NETWORKS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W3, 41-48. doi:10.5194/isprs-annals-iv-2-w3-41-2017 es_ES
dc.description.references Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., & Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225. doi:10.1016/j.compag.2015.08.008 es_ES
dc.description.references Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R. L., & Mouazen, A. M. (2016). Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, 121, 57-65. doi:10.1016/j.compag.2015.11.018 es_ES
dc.description.references Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technology, 8, 61-69. doi:10.1016/j.protcy.2013.11.010 es_ES
dc.description.references Pujari, J. D., Yakkundimath, R., & Byadgi, A. S. (2015). Image Processing Based Detection of Fungal Diseases in Plants. Procedia Computer Science, 46, 1802-1808. doi:10.1016/j.procs.2015.02.137 es_ES
dc.description.references Ray, P. P. (2017). Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9(4), 395-420. doi:10.3233/ais-170440 es_ES
dc.description.references Salman, A. G., Heryadi, Y., Abdurahman, E., & Suparta, W. (2018). Single Layer & Multi-layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting. Procedia Computer Science, 135, 89-98. doi:10.1016/j.procs.2018.08.153 es_ES
dc.description.references Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003 es_ES
dc.description.references Shareef, Z., & Reddy, S. R. N. (2018). Wireless sensor network for aquaculture: Review, survey, and case study of aquaculture practices in western Godavari region. Journal of Ambient Intelligence and Smart Environments, 10(5), 409-423. doi:10.3233/ais-180498 es_ES
dc.description.references Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Computational Intelligence and Neuroscience, 2016, 1-11. doi:10.1155/2016/3289801 es_ES
dc.description.references Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. doi:10.1016/j.agsy.2017.01.023 es_ES
dc.description.references Akram, M., & El, C. (2016). Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks. International Journal of Computer Applications, 143(11), 7-11. doi:10.5120/ijca2016910497 es_ES
dc.description.references Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712. doi:10.1007/s11119-012-9274-5 es_ES
dc.description.references Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918-929. doi:10.1016/j.jhydrol.2018.04.065 es_ES
dc.description.references Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113-132. doi:10.1016/s0168-1699(02)00096-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem