- -

Defect reconstruction by non-destructive testing with laser induced ultrasonic detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Defect reconstruction by non-destructive testing with laser induced ultrasonic detection

Mostrar el registro completo del ítem

Selim, H.; Delgado-Prieto, M.; Trull, J.; Picó Vila, R.; Romeral, L.; Cojocaru, C. (2020). Defect reconstruction by non-destructive testing with laser induced ultrasonic detection. Ultrasonics. 101:1-8. https://doi.org/10.1016/j.ultras.2019.106000

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170275

Ficheros en el ítem

Metadatos del ítem

Título: Defect reconstruction by non-destructive testing with laser induced ultrasonic detection
Autor: Selim, Hossam Delgado-Prieto, Miguel Trull, Jose Picó Vila, Rubén Romeral, Luis Cojocaru, Crina
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] This work envisages a detailed study of two-dimensional defect localization and reconstruction, using laser generated ultrasound and its application as a remotely controlled non-destructive testing method. As an ...[+]
Palabras clave: Laser ultrasonics , Defect reconstruction , Non-destructive testing , Synthetic aperture focusing technique , 2D apodization , NDT , SAFT , B-scan
Derechos de uso: Reserva de todos los derechos
Fuente:
Ultrasonics. (issn: 0041-624X )
DOI: 10.1016/j.ultras.2019.106000
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ultras.2019.106000
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-1-P/ES/ONDAS DE LUZ EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/
info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/
Agradecimientos:
The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-1 and FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, ...[+]
Tipo: Artículo

References

Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146

Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647

Ham, S., Song, H., Oelze, M. L., & Popovics, J. S. (2017). A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete. Ultrasonics, 75, 46-57. doi:10.1016/j.ultras.2016.11.003 [+]
Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146

Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647

Ham, S., Song, H., Oelze, M. L., & Popovics, J. S. (2017). A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete. Ultrasonics, 75, 46-57. doi:10.1016/j.ultras.2016.11.003

Amjad, U., Yadav, S. K., & Kundu, T. (2015). Detection and quantification of pipe damage from change in time of flight and phase. Ultrasonics, 62, 223-236. doi:10.1016/j.ultras.2015.05.022

Kharrat, M., & Gaillet, L. (2015). Non-destructive evaluation of anchorage zones by ultrasonics techniques. Ultrasonics, 61, 52-61. doi:10.1016/j.ultras.2015.03.007

Masserey, B., Raemy, C., & Fromme, P. (2014). High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures. Ultrasonics, 54(7), 1720-1728. doi:10.1016/j.ultras.2014.04.023

Delrue, S., Van Den Abeele, K., Blomme, E., Deveugele, J., Lust, P., & Matar, O. B. (2010). Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics, 50(2), 188-196. doi:10.1016/j.ultras.2009.08.005

Delrue, S., Tabatabaeipour, M., Hettler, J., & Van Den Abeele, K. (2016). Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. Ultrasonics, 68, 71-79. doi:10.1016/j.ultras.2016.02.012

Kreis, T. (2016). Application of Digital Holography for Nondestructive Testing and Metrology: A Review. IEEE Transactions on Industrial Informatics, 12(1), 240-247. doi:10.1109/tii.2015.2482900

Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. doi:10.1364/ao.54.007483

Zhu, Y.-K., Tian, G.-Y., Lu, R.-S., & Zhang, H. (2011). A Review of Optical NDT Technologies. Sensors, 11(8), 7773-7798. doi:10.3390/s110807773

Boonsang, S., Zainal, J., & Dewhurst, R. J. (2004). Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging. Insight - Non-Destructive Testing and Condition Monitoring, 46(4), 196-199. doi:10.1784/insi.46.4.196.55648

Spies, M., & Rieder, H. (2010). Synthetic aperture focusing of ultrasonic inspection data to enhance the probability of detection of defects in strongly attenuating materials. NDT & E International, 43(5), 425-431. doi:10.1016/j.ndteint.2010.04.002

Ganguli, A., Rappaport, C. M., Abramo, D., & Wadia-Fascetti, S. (2012). Synthetic aperture imaging for flaw detection in a concrete medium. NDT & E International, 45(1), 79-90. doi:10.1016/j.ndteint.2011.09.004

Sinclair, A. N., Fortin, J., Shakibi, B., Honarvar, F., Jastrzebski, M., & Moles, M. D. C. (2010). Enhancement of ultrasonic images for sizing of defects by time-of-flight diffraction. NDT & E International, 43(3), 258-264. doi:10.1016/j.ndteint.2009.12.003

Tiwari, K. A., Raisutis, R., Tumsys, O., Ostreika, A., Jankauskas, K., & Jakutavicius, J. (2019). Defect Estimation in Non-Destructive Testing of Composites by Ultrasonic Guided Waves and Image Processing. Electronics, 8(3), 315. doi:10.3390/electronics8030315

Tiwari, K., Raisutis, R., & Samaitis, V. (2017). Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures. Sensors, 17(12), 2858. doi:10.3390/s17122858

Selim, H., Trull, J., Delgado Prieto, M., Picó, R., Romeral, L., & Cojocaru, C. (2019). Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors, 19(9), 2138. doi:10.3390/s19092138

Wulang Widada, Two Dimensional Window Functions, Thesis, Naval Postgraduate School, 1979.

Spies, M., Rieder, H., Dillhöfer, A., Schmitz, V., & Müller, W. (2012). Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. Journal of Nondestructive Evaluation, 31(4), 310-323. doi:10.1007/s10921-012-0150-z

T. Stepinski, F. Lingvall, Synthetic aperture focusing techniques for ultrasonic imaging of solid objects, in: 2010 8th European Conference on Synthetic Aperture Radar (EUSAR), 2010, pp. 1–4. doi: papers2://publication/uuid/72BB2E26-227F-4027-9433-3990165E5916. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5758760.

I.I. Matsuya S., Matozaki K., Directivity Patterns of Ultrasound Generated by Evanescent light at the Interface between Prism and Aluminum Surface, vol. 34, 2013, pp. 205–206.

Zhang, P., Ying, C. F., & Shen, J. (1997). Directivity patterns of laser thermoelastically generated ultrasound in metal with consideration of thermal conductivity. Ultrasonics, 35(3), 233-240. doi:10.1016/s0041-624x(96)00106-0

Krylov, V. V. (2016). Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters. Ultrasonics, 69, 279-284. doi:10.1016/j.ultras.2016.01.011

Li, J., Zhang, H., Ni, C., & Shen, Z. (2013). Analysis of laser generated ultrasonic wave frequency characteristics induced by a partially closed surface-breaking crack. Applied Optics, 52(18), 4179. doi:10.1364/ao.52.004179

T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out: Second Edition, 2004. https://doi.org/10.1016/C2011-0-07261-7.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem