- -

Defect reconstruction by non-destructive testing with laser induced ultrasonic detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Defect reconstruction by non-destructive testing with laser induced ultrasonic detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Selim, Hossam es_ES
dc.contributor.author Delgado-Prieto, Miguel es_ES
dc.contributor.author Trull, Jose es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Romeral, Luis es_ES
dc.contributor.author Cojocaru, Crina es_ES
dc.date.accessioned 2021-07-27T03:37:41Z
dc.date.available 2021-07-27T03:37:41Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 0041-624X es_ES
dc.identifier.uri http://hdl.handle.net/10251/170275
dc.description.abstract [EN] This work envisages a detailed study of two-dimensional defect localization and reconstruction, using laser generated ultrasound and its application as a remotely controlled non-destructive testing method. As an alternative to full ultrasonic or full optical approaches, we propose a hybrid configuration where ultrasound is generated by impact of laser pulses, while the detection is done with conventional transducers. We implement this approach for defect reconstruction in metallic elements and show that it combines advantages of both photonic and ultrasonic devices, reducing the drawbacks of both methods. We combine our experimental results with a high-resolution signal processing procedure based on the synthetic aperture focusing technique for the benefit of the final two-dimensional visualization of the defects. es_ES
dc.description.sponsorship The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-1 and FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Ultrasonics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Laser ultrasonics es_ES
dc.subject Defect reconstruction es_ES
dc.subject Non-destructive testing es_ES
dc.subject Synthetic aperture focusing technique es_ES
dc.subject 2D apodization es_ES
dc.subject NDT es_ES
dc.subject SAFT es_ES
dc.subject B-scan es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Defect reconstruction by non-destructive testing with laser induced ultrasonic detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ultras.2019.106000 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-1-P/ES/ONDAS DE LUZ EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Selim, H.; Delgado-Prieto, M.; Trull, J.; Picó Vila, R.; Romeral, L.; Cojocaru, C. (2020). Defect reconstruction by non-destructive testing with laser induced ultrasonic detection. Ultrasonics. 101:1-8. https://doi.org/10.1016/j.ultras.2019.106000 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ultras.2019.106000 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101 es_ES
dc.relation.pasarela S\392923 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146 es_ES
dc.description.references Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647 es_ES
dc.description.references Ham, S., Song, H., Oelze, M. L., & Popovics, J. S. (2017). A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete. Ultrasonics, 75, 46-57. doi:10.1016/j.ultras.2016.11.003 es_ES
dc.description.references Amjad, U., Yadav, S. K., & Kundu, T. (2015). Detection and quantification of pipe damage from change in time of flight and phase. Ultrasonics, 62, 223-236. doi:10.1016/j.ultras.2015.05.022 es_ES
dc.description.references Kharrat, M., & Gaillet, L. (2015). Non-destructive evaluation of anchorage zones by ultrasonics techniques. Ultrasonics, 61, 52-61. doi:10.1016/j.ultras.2015.03.007 es_ES
dc.description.references Masserey, B., Raemy, C., & Fromme, P. (2014). High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures. Ultrasonics, 54(7), 1720-1728. doi:10.1016/j.ultras.2014.04.023 es_ES
dc.description.references Delrue, S., Van Den Abeele, K., Blomme, E., Deveugele, J., Lust, P., & Matar, O. B. (2010). Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics, 50(2), 188-196. doi:10.1016/j.ultras.2009.08.005 es_ES
dc.description.references Delrue, S., Tabatabaeipour, M., Hettler, J., & Van Den Abeele, K. (2016). Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. Ultrasonics, 68, 71-79. doi:10.1016/j.ultras.2016.02.012 es_ES
dc.description.references Kreis, T. (2016). Application of Digital Holography for Nondestructive Testing and Metrology: A Review. IEEE Transactions on Industrial Informatics, 12(1), 240-247. doi:10.1109/tii.2015.2482900 es_ES
dc.description.references Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. doi:10.1364/ao.54.007483 es_ES
dc.description.references Zhu, Y.-K., Tian, G.-Y., Lu, R.-S., & Zhang, H. (2011). A Review of Optical NDT Technologies. Sensors, 11(8), 7773-7798. doi:10.3390/s110807773 es_ES
dc.description.references Boonsang, S., Zainal, J., & Dewhurst, R. J. (2004). Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging. Insight - Non-Destructive Testing and Condition Monitoring, 46(4), 196-199. doi:10.1784/insi.46.4.196.55648 es_ES
dc.description.references Spies, M., & Rieder, H. (2010). Synthetic aperture focusing of ultrasonic inspection data to enhance the probability of detection of defects in strongly attenuating materials. NDT & E International, 43(5), 425-431. doi:10.1016/j.ndteint.2010.04.002 es_ES
dc.description.references Ganguli, A., Rappaport, C. M., Abramo, D., & Wadia-Fascetti, S. (2012). Synthetic aperture imaging for flaw detection in a concrete medium. NDT & E International, 45(1), 79-90. doi:10.1016/j.ndteint.2011.09.004 es_ES
dc.description.references Sinclair, A. N., Fortin, J., Shakibi, B., Honarvar, F., Jastrzebski, M., & Moles, M. D. C. (2010). Enhancement of ultrasonic images for sizing of defects by time-of-flight diffraction. NDT & E International, 43(3), 258-264. doi:10.1016/j.ndteint.2009.12.003 es_ES
dc.description.references Tiwari, K. A., Raisutis, R., Tumsys, O., Ostreika, A., Jankauskas, K., & Jakutavicius, J. (2019). Defect Estimation in Non-Destructive Testing of Composites by Ultrasonic Guided Waves and Image Processing. Electronics, 8(3), 315. doi:10.3390/electronics8030315 es_ES
dc.description.references Tiwari, K., Raisutis, R., & Samaitis, V. (2017). Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures. Sensors, 17(12), 2858. doi:10.3390/s17122858 es_ES
dc.description.references Selim, H., Trull, J., Delgado Prieto, M., Picó, R., Romeral, L., & Cojocaru, C. (2019). Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors, 19(9), 2138. doi:10.3390/s19092138 es_ES
dc.description.references Wulang Widada, Two Dimensional Window Functions, Thesis, Naval Postgraduate School, 1979. es_ES
dc.description.references Spies, M., Rieder, H., Dillhöfer, A., Schmitz, V., & Müller, W. (2012). Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. Journal of Nondestructive Evaluation, 31(4), 310-323. doi:10.1007/s10921-012-0150-z es_ES
dc.description.references T. Stepinski, F. Lingvall, Synthetic aperture focusing techniques for ultrasonic imaging of solid objects, in: 2010 8th European Conference on Synthetic Aperture Radar (EUSAR), 2010, pp. 1–4. doi: papers2://publication/uuid/72BB2E26-227F-4027-9433-3990165E5916. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5758760. es_ES
dc.description.references I.I. Matsuya S., Matozaki K., Directivity Patterns of Ultrasound Generated by Evanescent light at the Interface between Prism and Aluminum Surface, vol. 34, 2013, pp. 205–206. es_ES
dc.description.references Zhang, P., Ying, C. F., & Shen, J. (1997). Directivity patterns of laser thermoelastically generated ultrasound in metal with consideration of thermal conductivity. Ultrasonics, 35(3), 233-240. doi:10.1016/s0041-624x(96)00106-0 es_ES
dc.description.references Krylov, V. V. (2016). Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters. Ultrasonics, 69, 279-284. doi:10.1016/j.ultras.2016.01.011 es_ES
dc.description.references Li, J., Zhang, H., Ni, C., & Shen, Z. (2013). Analysis of laser generated ultrasonic wave frequency characteristics induced by a partially closed surface-breaking crack. Applied Optics, 52(18), 4179. doi:10.1364/ao.52.004179 es_ES
dc.description.references T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out: Second Edition, 2004. https://doi.org/10.1016/C2011-0-07261-7. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem