Vidal-Iglesias, F. J., Solla-Gullón, J., Rodrı́guez, P., Herrero, E., Montiel, V., Feliu, J. M., & Aldaz, A. (2004). Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 6(10), 1080-1084. doi:10.1016/j.elecom.2004.08.010
Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29. doi:10.1016/s1748-0132(07)70016-6
F. Jiao, P., Y. Zhou, H., X. Chen, L., & Yan, B. (2011). Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 18(14), 2086-2102. doi:10.2174/092986711795656199
[+]
Vidal-Iglesias, F. J., Solla-Gullón, J., Rodrı́guez, P., Herrero, E., Montiel, V., Feliu, J. M., & Aldaz, A. (2004). Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 6(10), 1080-1084. doi:10.1016/j.elecom.2004.08.010
Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29. doi:10.1016/s1748-0132(07)70016-6
F. Jiao, P., Y. Zhou, H., X. Chen, L., & Yan, B. (2011). Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 18(14), 2086-2102. doi:10.2174/092986711795656199
Peng, J., & Liang, X. (2019). Progress in research on gold nanoparticles in cancer management. Medicine, 98(18), e15311. doi:10.1097/md.0000000000015311
Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 19(7), 1979. doi:10.3390/ijms19071979
Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J., … Jiang, E. Y. (2002). Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics: Condensed Matter, 14(34), 7781-7795. doi:10.1088/0953-8984/14/34/301
Zanchet, D., Tolentino, H., Martins Alves, M. C., Alves, O. L., & Ugarte, D. (2000). Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chemical Physics Letters, 323(1-2), 167-172. doi:10.1016/s0009-2614(00)00424-3
Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2), 75-87. doi:10.1002/tcr.10053
Li, Y., Boone, E., & El-Sayed, M. A. (2002). Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir, 18(12), 4921-4925. doi:10.1021/la011469q
Bard, A. J. (2010). Inner-Sphere Heterogeneous Electrode Reactions. Electrocatalysis and Photocatalysis: The Challenge. Journal of the American Chemical Society, 132(22), 7559-7567. doi:10.1021/ja101578m
Link, S., & El-Sayed, M. A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212-4217. doi:10.1021/jp984796o
Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055
FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241(105), 20-22. doi:10.1038/physci241020a0
Attard, G. A., Ye, J.-Y., Jenkins, P., Vidal-Iglesias, F. J., Herrero, E., & Sun, S.-G. (2013). Citrate adsorption on Pt{hkl} electrodes and its role in the formation of shaped Pt nanoparticles. Journal of Electroanalytical Chemistry, 688, 249-256. doi:10.1016/j.jelechem.2012.08.040
Gisbert-González, J. M., Feliu, J. M., Ferre-Vilaplana, A., & Herrero, E. (2018). Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. The Journal of Physical Chemistry C, 122(33), 19004-19014. doi:10.1021/acs.jpcc.8b05195
Lin, Y., Pan, G.-B., Su, G.-J., Fang, X.-H., Wan, L.-J., & Bai, C.-L. (2003). Study of Citrate Adsorbed on the Au(111) Surface by Scanning Probe Microscopy. Langmuir, 19(24), 10000-10003. doi:10.1021/la0350251
Floate, S., Hosseini, M., Arshadi, M. R., Ritson, D., Young, K. L., & Nichols, R. J. (2003). An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. Journal of Electroanalytical Chemistry, 542, 67-74. doi:10.1016/s0022-0728(02)01451-1
Kunze, J., Burgess, I., Nichols, R., Buess-Herman, C., & Lipkowski, J. (2007). Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. Journal of Electroanalytical Chemistry, 599(2), 147-159. doi:10.1016/j.jelechem.2005.12.020
Rodes, A., Herrero, E., Feliu, J. M., & Aldaz, A. (1996). Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 92(20), 3769. doi:10.1039/ft9969203769
Berná, A., Delgado, J. M., Orts, J. M., Rodes, A., & Feliu, J. M. (2008). Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 53(5), 2309-2321. doi:10.1016/j.electacta.2007.09.055
Delgado, J. M., Orts, J. M., Pérez, J. M., & Rodes, A. (2008). Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 617(2), 130-140. doi:10.1016/j.jelechem.2008.01.029
Wandlowski, T., Ataka, K., Pronkin, S., & Diesing, D. (2004). Surface enhanced infrared spectroscopy—Au(1 1 1-20nm)/sulphuric acid—new aspects and challenges. Electrochimica Acta, 49(8), 1233-1247. doi:10.1016/j.electacta.2003.06.002
A. Rodes, Pérez, J. M., Aldaz, A, Vibrational spectroscopy, in: W.L. Vielstich, Arnold, Gasteiger, H. A. (Ed.) Handbook of Fuel Cells - Fundamentals, Technology and Applications, John Wiley & Sons, Ltd, Chichester, 2003.
Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452
Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125
Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396
Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413
Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015
Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005
Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684
Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067
Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j
Narasimhan, S., & Vanderbilt, D. (1992). Elastic stress domains and the herringbone reconstruction on Au(111). Physical Review Letters, 69(10), 1564-1567. doi:10.1103/physrevlett.69.1564
Harten, U., Lahee, A. M., Toennies, J. P., & Wöll, C. (1985). Observation of a Soliton Reconstruction of Au(111) by High-Resolution Helium-Atom Diffraction. Physical Review Letters, 54(24), 2619-2622. doi:10.1103/physrevlett.54.2619
Needs, R. J., & Mansfield, M. (1989). Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold. Journal of Physics: Condensed Matter, 1(41), 7555-7563. doi:10.1088/0953-8984/1/41/006
Kolb, D. (1996). Reconstruction phenomena at metal-electrolyte interfaces. Progress in Surface Science, 51(2), 109-173. doi:10.1016/0079-6816(96)00002-0
Kolb, D. M., & Schneider, J. (1986). Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2). Electrochimica Acta, 31(8), 929-936. doi:10.1016/0013-4686(86)80005-6
Shi, Z., Lipkowski, J., Gamboa, M., Zelenay, P., & Wieckowski, A. (1994). Investigations of SO42− adsorption at the Au(111) electrode by chronocoulometry and radiochemistry. Journal of Electroanalytical Chemistry, 366(1-2), 317-326. doi:10.1016/0022-0728(93)03008-d
Gao, X., Chang, S., Jiang, X., Hamelin, A., & Weaver, M. J. (1992). Emergence of atomic‐level structural information for ordered metal–solution interfaces: Some recent contributions from in situ infrared spectroscopy and scanning tunneling microscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10(5), 2972-2980. doi:10.1116/1.577895
Hamelin, A., Stoicoviciu, L., Edens, G. J., Gao, X., & Weaver, M. J. (1994). Some electrochemical consequences of potential-induced surface reconstruction on Au(100): Double-layer nonuniformity and electrode kinetics. Journal of Electroanalytical Chemistry, 365(1-2), 47-57. doi:10.1016/0022-0728(93)02961-g
Schneider, J., & Kolb, D. M. (1988). Potential-induced surface reconstruction of Au(100). Surface Science, 193(3), 579-592. doi:10.1016/0039-6028(88)90455-4
Gao, X., Hamelin, A., & Weaver, M. J. (1991). Atomic relaxation at ordered electrode surfaces probed by scanning tunneling microscopy: Au(111) in aqueous solution compared with ultrahigh‐vacuum environments. The Journal of Chemical Physics, 95(9), 6993-6996. doi:10.1063/1.461043
Hamm, U. W., Kramer, D., Zhai, R. S., & Kolb, D. M. (1996). The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique. Journal of Electroanalytical Chemistry, 414(1), 85-89. doi:10.1016/0022-0728(96)01006-6
Chen, A., & Lipkowski, J. (1999). Electrochemical and Spectroscopic Studies of Hydroxide Adsorption at the Au(111) Electrode. The Journal of Physical Chemistry B, 103(4), 682-691. doi:10.1021/jp9836372
Shi, Z., Lipkowski, J., Mirwald, S., & Pettinger, B. (1995). Electrochemical and second harmonic generation study of SO2−4 adsorption at the Au(111) electrode. Journal of Electroanalytical Chemistry, 396(1-2), 115-124. doi:10.1016/0022-0728(95)03989-t
Shi, Z., & Lipkowski, J. (1996). Chloride adsorption at the Au(111) electrode surface. Journal of Electroanalytical Chemistry, 403(1-2), 225-239. doi:10.1016/0022-0728(95)04313-6
Van Hove, M. A., Koestner, R. J., Stair, P. C., Bibérian, J. P., Kesmodel, L. L., BartoŠ, I., & Somorjai, G. A. (1981). The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surface Science, 103(1), 189-217. doi:10.1016/0039-6028(81)90107-2
Gao, X., Hamelin, A., & Weaver, M. J. (1991). Potential-dependent reconstruction at ordered Au(100)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review Letters, 67(5), 618-621. doi:10.1103/physrevlett.67.618
Gao, X., Hamelin, A., & Weaver, M. J. (1992). Elucidating complex surface reconstructions with atomic-resolution scanning tunneling microscopy: Au(100)-aqueous electrochemical interface. Physical Review B, 46(11), 7096-7102. doi:10.1103/physrevb.46.7096
Hamm, U. W., & Kolb, D. M. (1992). On the stability of reconstructed Au(100) surfaces in the presence of organic molecules. Journal of Electroanalytical Chemistry, 332(1-2), 339-347. doi:10.1016/0022-0728(92)80364-a
Gao, X., Hamelin, A., & Weaver, M. J. (1991). Reconstruction at ordered Au(110)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review B, 44(19), 10983-10986. doi:10.1103/physrevb.44.10983
Herzberg, G., & Crawford, B. L. (1946). Infrared and Raman Spectra of Polyatomic Molecules. The Journal of Physical Chemistry, 50(3), 288-288. doi:10.1021/j150447a021
Calvante, J. J., Marinković, N. S., Kováčová, Z., & Ronald Fawcett, W. (1997). SNIFTIRS studies of the double layer at the metal/solution interface. Part 1. Single crystal gold electrodes in aqueous perchloric acid. Journal of Electroanalytical Chemistry, 421(1-2), 49-57. doi:10.1016/s0022-0728(96)04857-7
Martin, R. B. (1961). A COMPLETE IONIZATION SCHEME FOR CITRIC ACID. The Journal of Physical Chemistry, 65(11), 2053-2055. doi:10.1021/j100828a032
Greenler, R. G. (1966). Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics, 44(1), 310-315. doi:10.1063/1.1726462
Osawa, M., Ataka, K.-I., Yoshii, K., & Nishikawa, Y. (1993). Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles. Applied Spectroscopy, 47(9), 1497-1502. doi:10.1366/0003702934067478
Ataka, K., Yotsuyanagi, T., & Osawa, M. (1996). Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. The Journal of Physical Chemistry, 100(25), 10664-10672. doi:10.1021/jp953636z
Park, J.-W., & Shumaker-Parry, J. S. (2014). Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society, 136(5), 1907-1921. doi:10.1021/ja4097384
Martin, D. S., Cole, R. J., & Haq, S. (2003). Investigating the adsorption of oxalic acid onto Cu() to create a chemically functionalised surface. Surface Science, 539(1-3), 171-181. doi:10.1016/s0039-6028(03)00788-x
Delgado, J. M., Berná, A., Orts, J. M., Rodes, A., & Feliu, J. M. (2007). In Situ Infrared Study of the Adsorption and Surface Acid−Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. The Journal of Physical Chemistry C, 111(27), 9943-9952. doi:10.1021/jp071489m
Heller, A., Barkleit, A., Foerstendorf, H., Tsushima, S., Heim, K., & Bernhard, G. (2012). Curium(iii) citrate speciation in biological systems: a europium(iii) assisted spectroscopic and quantum chemical study. Dalton Transactions, 41(45), 13969. doi:10.1039/c2dt31480k
A. Berná, A. Rodes, J.M. Feliu, An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the [01̄1] zone, Electrochimica Acta, 49 (2004) 1257–1269.
Berná, A., Rodes, A., & Feliu, J. M. (2004). Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 563(1), 49-62. doi:10.1016/j.jelechem.2003.07.043
Giersig, M., & Mulvaney, P. (1993). Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 9(12), 3408-3413. doi:10.1021/la00036a014
Nichols, R. J., Burgess, I., Young, K. L., Zamlynny, V., & Lipkowski, J. (2004). A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. Journal of Electroanalytical Chemistry, 563(1), 33-39. doi:10.1016/j.jelechem.2003.08.007
Martínez-Hincapié, R., Berná, A., Rodes, A., Climent, V., & Feliu, J. M. (2016). Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO2-Containing Perchloric Acid Solutions. The Journal of Physical Chemistry C, 120(29), 16191-16199. doi:10.1021/acs.jpcc.6b00589
[-]