- -

Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles

Mostrar el registro completo del ítem

Gisbert-González, JM.; Cheuquepán, W.; Ferre Vilaplana, A.; Herrero, E.; Feliu, JM. (2020). Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. Journal of Electroanalytical Chemistry. 875:1-11. https://doi.org/10.1016/j.jelechem.2020.114015

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170278

Ficheros en el ítem

Metadatos del ítem

Título: Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles
Autor: Gisbert-González, José M. Cheuquepán, William Ferre Vilaplana, Adolfo Herrero, Enrique Feliu, Juan M.
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Advanced applications of colloidal nanoparticles (NPs) become to depend on their specific shape, which is controlled by the adsorption behavior of the capping agent involved in their synthesis. To understand the way ...[+]
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Electroanalytical Chemistry. (issn: 1572-6657 )
DOI: 10.1016/j.jelechem.2020.114015
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jelechem.2020.114015
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/
Agradecimientos:
This work has been financially supported by the MCINN-FEDER (Spain) through project CTQ2016-76221-P.
Tipo: Artículo

References

Vidal-Iglesias, F. J., Solla-Gullón, J., Rodrı́guez, P., Herrero, E., Montiel, V., Feliu, J. M., & Aldaz, A. (2004). Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 6(10), 1080-1084. doi:10.1016/j.elecom.2004.08.010

Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29. doi:10.1016/s1748-0132(07)70016-6

F. Jiao, P., Y. Zhou, H., X. Chen, L., & Yan, B. (2011). Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 18(14), 2086-2102. doi:10.2174/092986711795656199 [+]
Vidal-Iglesias, F. J., Solla-Gullón, J., Rodrı́guez, P., Herrero, E., Montiel, V., Feliu, J. M., & Aldaz, A. (2004). Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 6(10), 1080-1084. doi:10.1016/j.elecom.2004.08.010

Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29. doi:10.1016/s1748-0132(07)70016-6

F. Jiao, P., Y. Zhou, H., X. Chen, L., & Yan, B. (2011). Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 18(14), 2086-2102. doi:10.2174/092986711795656199

Peng, J., & Liang, X. (2019). Progress in research on gold nanoparticles in cancer management. Medicine, 98(18), e15311. doi:10.1097/md.0000000000015311

Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 19(7), 1979. doi:10.3390/ijms19071979

Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J., … Jiang, E. Y. (2002). Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics: Condensed Matter, 14(34), 7781-7795. doi:10.1088/0953-8984/14/34/301

Zanchet, D., Tolentino, H., Martins Alves, M. C., Alves, O. L., & Ugarte, D. (2000). Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chemical Physics Letters, 323(1-2), 167-172. doi:10.1016/s0009-2614(00)00424-3

Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2), 75-87. doi:10.1002/tcr.10053

Li, Y., Boone, E., & El-Sayed, M. A. (2002). Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir, 18(12), 4921-4925. doi:10.1021/la011469q

Bard, A. J. (2010). Inner-Sphere Heterogeneous Electrode Reactions. Electrocatalysis and Photocatalysis: The Challenge. Journal of the American Chemical Society, 132(22), 7559-7567. doi:10.1021/ja101578m

Link, S., & El-Sayed, M. A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212-4217. doi:10.1021/jp984796o

Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055

FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241(105), 20-22. doi:10.1038/physci241020a0

Attard, G. A., Ye, J.-Y., Jenkins, P., Vidal-Iglesias, F. J., Herrero, E., & Sun, S.-G. (2013). Citrate adsorption on Pt{hkl} electrodes and its role in the formation of shaped Pt nanoparticles. Journal of Electroanalytical Chemistry, 688, 249-256. doi:10.1016/j.jelechem.2012.08.040

Gisbert-González, J. M., Feliu, J. M., Ferre-Vilaplana, A., & Herrero, E. (2018). Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. The Journal of Physical Chemistry C, 122(33), 19004-19014. doi:10.1021/acs.jpcc.8b05195

Lin, Y., Pan, G.-B., Su, G.-J., Fang, X.-H., Wan, L.-J., & Bai, C.-L. (2003). Study of Citrate Adsorbed on the Au(111) Surface by Scanning Probe Microscopy. Langmuir, 19(24), 10000-10003. doi:10.1021/la0350251

Floate, S., Hosseini, M., Arshadi, M. R., Ritson, D., Young, K. L., & Nichols, R. J. (2003). An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. Journal of Electroanalytical Chemistry, 542, 67-74. doi:10.1016/s0022-0728(02)01451-1

Kunze, J., Burgess, I., Nichols, R., Buess-Herman, C., & Lipkowski, J. (2007). Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. Journal of Electroanalytical Chemistry, 599(2), 147-159. doi:10.1016/j.jelechem.2005.12.020

Rodes, A., Herrero, E., Feliu, J. M., & Aldaz, A. (1996). Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 92(20), 3769. doi:10.1039/ft9969203769

Berná, A., Delgado, J. M., Orts, J. M., Rodes, A., & Feliu, J. M. (2008). Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 53(5), 2309-2321. doi:10.1016/j.electacta.2007.09.055

Delgado, J. M., Orts, J. M., Pérez, J. M., & Rodes, A. (2008). Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 617(2), 130-140. doi:10.1016/j.jelechem.2008.01.029

Wandlowski, T., Ataka, K., Pronkin, S., & Diesing, D. (2004). Surface enhanced infrared spectroscopy—Au(1 1 1-20nm)/sulphuric acid—new aspects and challenges. Electrochimica Acta, 49(8), 1233-1247. doi:10.1016/j.electacta.2003.06.002

A. Rodes, Pérez, J. M., Aldaz, A, Vibrational spectroscopy, in: W.L. Vielstich, Arnold, Gasteiger, H. A. (Ed.) Handbook of Fuel Cells - Fundamentals, Technology and Applications, John Wiley & Sons, Ltd, Chichester, 2003.

Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452

Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125

Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396

Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413

Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015

Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005

Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684

Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067

Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j

Narasimhan, S., & Vanderbilt, D. (1992). Elastic stress domains and the herringbone reconstruction on Au(111). Physical Review Letters, 69(10), 1564-1567. doi:10.1103/physrevlett.69.1564

Harten, U., Lahee, A. M., Toennies, J. P., & Wöll, C. (1985). Observation of a Soliton Reconstruction of Au(111) by High-Resolution Helium-Atom Diffraction. Physical Review Letters, 54(24), 2619-2622. doi:10.1103/physrevlett.54.2619

Needs, R. J., & Mansfield, M. (1989). Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold. Journal of Physics: Condensed Matter, 1(41), 7555-7563. doi:10.1088/0953-8984/1/41/006

Kolb, D. (1996). Reconstruction phenomena at metal-electrolyte interfaces. Progress in Surface Science, 51(2), 109-173. doi:10.1016/0079-6816(96)00002-0

Kolb, D. M., & Schneider, J. (1986). Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2). Electrochimica Acta, 31(8), 929-936. doi:10.1016/0013-4686(86)80005-6

Shi, Z., Lipkowski, J., Gamboa, M., Zelenay, P., & Wieckowski, A. (1994). Investigations of SO42− adsorption at the Au(111) electrode by chronocoulometry and radiochemistry. Journal of Electroanalytical Chemistry, 366(1-2), 317-326. doi:10.1016/0022-0728(93)03008-d

Gao, X., Chang, S., Jiang, X., Hamelin, A., & Weaver, M. J. (1992). Emergence of atomic‐level structural information for ordered metal–solution interfaces: Some recent contributions from in situ infrared spectroscopy and scanning tunneling microscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10(5), 2972-2980. doi:10.1116/1.577895

Hamelin, A., Stoicoviciu, L., Edens, G. J., Gao, X., & Weaver, M. J. (1994). Some electrochemical consequences of potential-induced surface reconstruction on Au(100): Double-layer nonuniformity and electrode kinetics. Journal of Electroanalytical Chemistry, 365(1-2), 47-57. doi:10.1016/0022-0728(93)02961-g

Schneider, J., & Kolb, D. M. (1988). Potential-induced surface reconstruction of Au(100). Surface Science, 193(3), 579-592. doi:10.1016/0039-6028(88)90455-4

Gao, X., Hamelin, A., & Weaver, M. J. (1991). Atomic relaxation at ordered electrode surfaces probed by scanning tunneling microscopy: Au(111) in aqueous solution compared with ultrahigh‐vacuum environments. The Journal of Chemical Physics, 95(9), 6993-6996. doi:10.1063/1.461043

Hamm, U. W., Kramer, D., Zhai, R. S., & Kolb, D. M. (1996). The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique. Journal of Electroanalytical Chemistry, 414(1), 85-89. doi:10.1016/0022-0728(96)01006-6

Chen, A., & Lipkowski, J. (1999). Electrochemical and Spectroscopic Studies of Hydroxide Adsorption at the Au(111) Electrode. The Journal of Physical Chemistry B, 103(4), 682-691. doi:10.1021/jp9836372

Shi, Z., Lipkowski, J., Mirwald, S., & Pettinger, B. (1995). Electrochemical and second harmonic generation study of SO2−4 adsorption at the Au(111) electrode. Journal of Electroanalytical Chemistry, 396(1-2), 115-124. doi:10.1016/0022-0728(95)03989-t

Shi, Z., & Lipkowski, J. (1996). Chloride adsorption at the Au(111) electrode surface. Journal of Electroanalytical Chemistry, 403(1-2), 225-239. doi:10.1016/0022-0728(95)04313-6

Van Hove, M. A., Koestner, R. J., Stair, P. C., Bibérian, J. P., Kesmodel, L. L., BartoŠ, I., & Somorjai, G. A. (1981). The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surface Science, 103(1), 189-217. doi:10.1016/0039-6028(81)90107-2

Gao, X., Hamelin, A., & Weaver, M. J. (1991). Potential-dependent reconstruction at ordered Au(100)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review Letters, 67(5), 618-621. doi:10.1103/physrevlett.67.618

Gao, X., Hamelin, A., & Weaver, M. J. (1992). Elucidating complex surface reconstructions with atomic-resolution scanning tunneling microscopy: Au(100)-aqueous electrochemical interface. Physical Review B, 46(11), 7096-7102. doi:10.1103/physrevb.46.7096

Hamm, U. W., & Kolb, D. M. (1992). On the stability of reconstructed Au(100) surfaces in the presence of organic molecules. Journal of Electroanalytical Chemistry, 332(1-2), 339-347. doi:10.1016/0022-0728(92)80364-a

Gao, X., Hamelin, A., & Weaver, M. J. (1991). Reconstruction at ordered Au(110)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review B, 44(19), 10983-10986. doi:10.1103/physrevb.44.10983

Herzberg, G., & Crawford, B. L. (1946). Infrared and Raman Spectra of Polyatomic Molecules. The Journal of Physical Chemistry, 50(3), 288-288. doi:10.1021/j150447a021

Calvante, J. J., Marinković, N. S., Kováčová, Z., & Ronald Fawcett, W. (1997). SNIFTIRS studies of the double layer at the metal/solution interface. Part 1. Single crystal gold electrodes in aqueous perchloric acid. Journal of Electroanalytical Chemistry, 421(1-2), 49-57. doi:10.1016/s0022-0728(96)04857-7

Martin, R. B. (1961). A COMPLETE IONIZATION SCHEME FOR CITRIC ACID. The Journal of Physical Chemistry, 65(11), 2053-2055. doi:10.1021/j100828a032

Greenler, R. G. (1966). Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics, 44(1), 310-315. doi:10.1063/1.1726462

Osawa, M., Ataka, K.-I., Yoshii, K., & Nishikawa, Y. (1993). Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles. Applied Spectroscopy, 47(9), 1497-1502. doi:10.1366/0003702934067478

Ataka, K., Yotsuyanagi, T., & Osawa, M. (1996). Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. The Journal of Physical Chemistry, 100(25), 10664-10672. doi:10.1021/jp953636z

Park, J.-W., & Shumaker-Parry, J. S. (2014). Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society, 136(5), 1907-1921. doi:10.1021/ja4097384

Martin, D. S., Cole, R. J., & Haq, S. (2003). Investigating the adsorption of oxalic acid onto Cu() to create a chemically functionalised surface. Surface Science, 539(1-3), 171-181. doi:10.1016/s0039-6028(03)00788-x

Delgado, J. M., Berná, A., Orts, J. M., Rodes, A., & Feliu, J. M. (2007). In Situ Infrared Study of the Adsorption and Surface Acid−Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. The Journal of Physical Chemistry C, 111(27), 9943-9952. doi:10.1021/jp071489m

Heller, A., Barkleit, A., Foerstendorf, H., Tsushima, S., Heim, K., & Bernhard, G. (2012). Curium(iii) citrate speciation in biological systems: a europium(iii) assisted spectroscopic and quantum chemical study. Dalton Transactions, 41(45), 13969. doi:10.1039/c2dt31480k

A. Berná, A. Rodes, J.M. Feliu, An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the [01̄1] zone, Electrochimica Acta, 49 (2004) 1257–1269.

Berná, A., Rodes, A., & Feliu, J. M. (2004). Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 563(1), 49-62. doi:10.1016/j.jelechem.2003.07.043

Giersig, M., & Mulvaney, P. (1993). Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 9(12), 3408-3413. doi:10.1021/la00036a014

Nichols, R. J., Burgess, I., Young, K. L., Zamlynny, V., & Lipkowski, J. (2004). A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. Journal of Electroanalytical Chemistry, 563(1), 33-39. doi:10.1016/j.jelechem.2003.08.007

Martínez-Hincapié, R., Berná, A., Rodes, A., Climent, V., & Feliu, J. M. (2016). Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO2-Containing Perchloric Acid Solutions. The Journal of Physical Chemistry C, 120(29), 16191-16199. doi:10.1021/acs.jpcc.6b00589

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem