Mostrar el registro sencillo del ítem
dc.contributor.author | Gisbert-González, José M. | es_ES |
dc.contributor.author | Cheuquepán, William | es_ES |
dc.contributor.author | Ferre Vilaplana, Adolfo | es_ES |
dc.contributor.author | Herrero, Enrique | es_ES |
dc.contributor.author | Feliu, Juan M. | es_ES |
dc.date.accessioned | 2021-07-27T03:37:46Z | |
dc.date.available | 2021-07-27T03:37:46Z | |
dc.date.issued | 2020-10-15 | es_ES |
dc.identifier.issn | 1572-6657 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170278 | |
dc.description.abstract | [EN] Advanced applications of colloidal nanoparticles (NPs) become to depend on their specific shape, which is controlled by the adsorption behavior of the capping agent involved in their synthesis. To understand the way in which citric acid determines the shape of gold NPs, the adsorption behavior of citrate on gold under the synthesis conditions is here investigated from electrochemical experiments on well-defined surfaces. Gibb excesses and charge numbers for the citrate adlayers deposited on the Au (111), Au(100) and Au(110) electrodes when a potential is applied were estimated at pHs 1 and 3. From these results, FTIR spectra and DFT calculations, it is concluded that solvated citrate can become simultaneously adsorbed through three dehydrogenated carboxylic groups in bidentate configuration on Au(111), but only through two on Au(100) and Au(110). As a result of this behavior, citrate can become more strongly adsorbed on Au(111) than on the other two basal planes of gold under the synthesis conditions, which would explain why tetrahedral and octahedral colloidal gold NPs are preferentially shaped when citric acid is used as the capping agent in water. This conclusion coincides with the previously one obtained on platinum, suggesting that the mechanism here described would operate also on other metals having fcc structure. | es_ES |
dc.description.sponsorship | This work has been financially supported by the MCINN-FEDER (Spain) through project CTQ2016-76221-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Electroanalytical Chemistry | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jelechem.2020.114015 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Gisbert-González, JM.; Cheuquepán, W.; Ferre Vilaplana, A.; Herrero, E.; Feliu, JM. (2020). Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. Journal of Electroanalytical Chemistry. 875:1-11. https://doi.org/10.1016/j.jelechem.2020.114015 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jelechem.2020.114015 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 875 | es_ES |
dc.relation.pasarela | S\427482 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Vidal-Iglesias, F. J., Solla-Gullón, J., Rodrı́guez, P., Herrero, E., Montiel, V., Feliu, J. M., & Aldaz, A. (2004). Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 6(10), 1080-1084. doi:10.1016/j.elecom.2004.08.010 | es_ES |
dc.description.references | Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29. doi:10.1016/s1748-0132(07)70016-6 | es_ES |
dc.description.references | F. Jiao, P., Y. Zhou, H., X. Chen, L., & Yan, B. (2011). Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 18(14), 2086-2102. doi:10.2174/092986711795656199 | es_ES |
dc.description.references | Peng, J., & Liang, X. (2019). Progress in research on gold nanoparticles in cancer management. Medicine, 98(18), e15311. doi:10.1097/md.0000000000015311 | es_ES |
dc.description.references | Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 19(7), 1979. doi:10.3390/ijms19071979 | es_ES |
dc.description.references | Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J., … Jiang, E. Y. (2002). Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics: Condensed Matter, 14(34), 7781-7795. doi:10.1088/0953-8984/14/34/301 | es_ES |
dc.description.references | Zanchet, D., Tolentino, H., Martins Alves, M. C., Alves, O. L., & Ugarte, D. (2000). Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chemical Physics Letters, 323(1-2), 167-172. doi:10.1016/s0009-2614(00)00424-3 | es_ES |
dc.description.references | Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2), 75-87. doi:10.1002/tcr.10053 | es_ES |
dc.description.references | Li, Y., Boone, E., & El-Sayed, M. A. (2002). Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir, 18(12), 4921-4925. doi:10.1021/la011469q | es_ES |
dc.description.references | Bard, A. J. (2010). Inner-Sphere Heterogeneous Electrode Reactions. Electrocatalysis and Photocatalysis: The Challenge. Journal of the American Chemical Society, 132(22), 7559-7567. doi:10.1021/ja101578m | es_ES |
dc.description.references | Link, S., & El-Sayed, M. A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212-4217. doi:10.1021/jp984796o | es_ES |
dc.description.references | Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055 | es_ES |
dc.description.references | FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241(105), 20-22. doi:10.1038/physci241020a0 | es_ES |
dc.description.references | Attard, G. A., Ye, J.-Y., Jenkins, P., Vidal-Iglesias, F. J., Herrero, E., & Sun, S.-G. (2013). Citrate adsorption on Pt{hkl} electrodes and its role in the formation of shaped Pt nanoparticles. Journal of Electroanalytical Chemistry, 688, 249-256. doi:10.1016/j.jelechem.2012.08.040 | es_ES |
dc.description.references | Gisbert-González, J. M., Feliu, J. M., Ferre-Vilaplana, A., & Herrero, E. (2018). Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. The Journal of Physical Chemistry C, 122(33), 19004-19014. doi:10.1021/acs.jpcc.8b05195 | es_ES |
dc.description.references | Lin, Y., Pan, G.-B., Su, G.-J., Fang, X.-H., Wan, L.-J., & Bai, C.-L. (2003). Study of Citrate Adsorbed on the Au(111) Surface by Scanning Probe Microscopy. Langmuir, 19(24), 10000-10003. doi:10.1021/la0350251 | es_ES |
dc.description.references | Floate, S., Hosseini, M., Arshadi, M. R., Ritson, D., Young, K. L., & Nichols, R. J. (2003). An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. Journal of Electroanalytical Chemistry, 542, 67-74. doi:10.1016/s0022-0728(02)01451-1 | es_ES |
dc.description.references | Kunze, J., Burgess, I., Nichols, R., Buess-Herman, C., & Lipkowski, J. (2007). Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. Journal of Electroanalytical Chemistry, 599(2), 147-159. doi:10.1016/j.jelechem.2005.12.020 | es_ES |
dc.description.references | Rodes, A., Herrero, E., Feliu, J. M., & Aldaz, A. (1996). Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 92(20), 3769. doi:10.1039/ft9969203769 | es_ES |
dc.description.references | Berná, A., Delgado, J. M., Orts, J. M., Rodes, A., & Feliu, J. M. (2008). Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 53(5), 2309-2321. doi:10.1016/j.electacta.2007.09.055 | es_ES |
dc.description.references | Delgado, J. M., Orts, J. M., Pérez, J. M., & Rodes, A. (2008). Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 617(2), 130-140. doi:10.1016/j.jelechem.2008.01.029 | es_ES |
dc.description.references | Wandlowski, T., Ataka, K., Pronkin, S., & Diesing, D. (2004). Surface enhanced infrared spectroscopy—Au(1 1 1-20nm)/sulphuric acid—new aspects and challenges. Electrochimica Acta, 49(8), 1233-1247. doi:10.1016/j.electacta.2003.06.002 | es_ES |
dc.description.references | A. Rodes, Pérez, J. M., Aldaz, A, Vibrational spectroscopy, in: W.L. Vielstich, Arnold, Gasteiger, H. A. (Ed.) Handbook of Fuel Cells - Fundamentals, Technology and Applications, John Wiley & Sons, Ltd, Chichester, 2003. | es_ES |
dc.description.references | Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452 | es_ES |
dc.description.references | Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 | es_ES |
dc.description.references | Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413 | es_ES |
dc.description.references | Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015 | es_ES |
dc.description.references | Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005 | es_ES |
dc.description.references | Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684 | es_ES |
dc.description.references | Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067 | es_ES |
dc.description.references | Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j | es_ES |
dc.description.references | Narasimhan, S., & Vanderbilt, D. (1992). Elastic stress domains and the herringbone reconstruction on Au(111). Physical Review Letters, 69(10), 1564-1567. doi:10.1103/physrevlett.69.1564 | es_ES |
dc.description.references | Harten, U., Lahee, A. M., Toennies, J. P., & Wöll, C. (1985). Observation of a Soliton Reconstruction of Au(111) by High-Resolution Helium-Atom Diffraction. Physical Review Letters, 54(24), 2619-2622. doi:10.1103/physrevlett.54.2619 | es_ES |
dc.description.references | Needs, R. J., & Mansfield, M. (1989). Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold. Journal of Physics: Condensed Matter, 1(41), 7555-7563. doi:10.1088/0953-8984/1/41/006 | es_ES |
dc.description.references | Kolb, D. (1996). Reconstruction phenomena at metal-electrolyte interfaces. Progress in Surface Science, 51(2), 109-173. doi:10.1016/0079-6816(96)00002-0 | es_ES |
dc.description.references | Kolb, D. M., & Schneider, J. (1986). Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2). Electrochimica Acta, 31(8), 929-936. doi:10.1016/0013-4686(86)80005-6 | es_ES |
dc.description.references | Shi, Z., Lipkowski, J., Gamboa, M., Zelenay, P., & Wieckowski, A. (1994). Investigations of SO42− adsorption at the Au(111) electrode by chronocoulometry and radiochemistry. Journal of Electroanalytical Chemistry, 366(1-2), 317-326. doi:10.1016/0022-0728(93)03008-d | es_ES |
dc.description.references | Gao, X., Chang, S., Jiang, X., Hamelin, A., & Weaver, M. J. (1992). Emergence of atomic‐level structural information for ordered metal–solution interfaces: Some recent contributions from in situ infrared spectroscopy and scanning tunneling microscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10(5), 2972-2980. doi:10.1116/1.577895 | es_ES |
dc.description.references | Hamelin, A., Stoicoviciu, L., Edens, G. J., Gao, X., & Weaver, M. J. (1994). Some electrochemical consequences of potential-induced surface reconstruction on Au(100): Double-layer nonuniformity and electrode kinetics. Journal of Electroanalytical Chemistry, 365(1-2), 47-57. doi:10.1016/0022-0728(93)02961-g | es_ES |
dc.description.references | Schneider, J., & Kolb, D. M. (1988). Potential-induced surface reconstruction of Au(100). Surface Science, 193(3), 579-592. doi:10.1016/0039-6028(88)90455-4 | es_ES |
dc.description.references | Gao, X., Hamelin, A., & Weaver, M. J. (1991). Atomic relaxation at ordered electrode surfaces probed by scanning tunneling microscopy: Au(111) in aqueous solution compared with ultrahigh‐vacuum environments. The Journal of Chemical Physics, 95(9), 6993-6996. doi:10.1063/1.461043 | es_ES |
dc.description.references | Hamm, U. W., Kramer, D., Zhai, R. S., & Kolb, D. M. (1996). The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique. Journal of Electroanalytical Chemistry, 414(1), 85-89. doi:10.1016/0022-0728(96)01006-6 | es_ES |
dc.description.references | Chen, A., & Lipkowski, J. (1999). Electrochemical and Spectroscopic Studies of Hydroxide Adsorption at the Au(111) Electrode. The Journal of Physical Chemistry B, 103(4), 682-691. doi:10.1021/jp9836372 | es_ES |
dc.description.references | Shi, Z., Lipkowski, J., Mirwald, S., & Pettinger, B. (1995). Electrochemical and second harmonic generation study of SO2−4 adsorption at the Au(111) electrode. Journal of Electroanalytical Chemistry, 396(1-2), 115-124. doi:10.1016/0022-0728(95)03989-t | es_ES |
dc.description.references | Shi, Z., & Lipkowski, J. (1996). Chloride adsorption at the Au(111) electrode surface. Journal of Electroanalytical Chemistry, 403(1-2), 225-239. doi:10.1016/0022-0728(95)04313-6 | es_ES |
dc.description.references | Van Hove, M. A., Koestner, R. J., Stair, P. C., Bibérian, J. P., Kesmodel, L. L., BartoŠ, I., & Somorjai, G. A. (1981). The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surface Science, 103(1), 189-217. doi:10.1016/0039-6028(81)90107-2 | es_ES |
dc.description.references | Gao, X., Hamelin, A., & Weaver, M. J. (1991). Potential-dependent reconstruction at ordered Au(100)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review Letters, 67(5), 618-621. doi:10.1103/physrevlett.67.618 | es_ES |
dc.description.references | Gao, X., Hamelin, A., & Weaver, M. J. (1992). Elucidating complex surface reconstructions with atomic-resolution scanning tunneling microscopy: Au(100)-aqueous electrochemical interface. Physical Review B, 46(11), 7096-7102. doi:10.1103/physrevb.46.7096 | es_ES |
dc.description.references | Hamm, U. W., & Kolb, D. M. (1992). On the stability of reconstructed Au(100) surfaces in the presence of organic molecules. Journal of Electroanalytical Chemistry, 332(1-2), 339-347. doi:10.1016/0022-0728(92)80364-a | es_ES |
dc.description.references | Gao, X., Hamelin, A., & Weaver, M. J. (1991). Reconstruction at ordered Au(110)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review B, 44(19), 10983-10986. doi:10.1103/physrevb.44.10983 | es_ES |
dc.description.references | Herzberg, G., & Crawford, B. L. (1946). Infrared and Raman Spectra of Polyatomic Molecules. The Journal of Physical Chemistry, 50(3), 288-288. doi:10.1021/j150447a021 | es_ES |
dc.description.references | Calvante, J. J., Marinković, N. S., Kováčová, Z., & Ronald Fawcett, W. (1997). SNIFTIRS studies of the double layer at the metal/solution interface. Part 1. Single crystal gold electrodes in aqueous perchloric acid. Journal of Electroanalytical Chemistry, 421(1-2), 49-57. doi:10.1016/s0022-0728(96)04857-7 | es_ES |
dc.description.references | Martin, R. B. (1961). A COMPLETE IONIZATION SCHEME FOR CITRIC ACID. The Journal of Physical Chemistry, 65(11), 2053-2055. doi:10.1021/j100828a032 | es_ES |
dc.description.references | Greenler, R. G. (1966). Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics, 44(1), 310-315. doi:10.1063/1.1726462 | es_ES |
dc.description.references | Osawa, M., Ataka, K.-I., Yoshii, K., & Nishikawa, Y. (1993). Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles. Applied Spectroscopy, 47(9), 1497-1502. doi:10.1366/0003702934067478 | es_ES |
dc.description.references | Ataka, K., Yotsuyanagi, T., & Osawa, M. (1996). Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. The Journal of Physical Chemistry, 100(25), 10664-10672. doi:10.1021/jp953636z | es_ES |
dc.description.references | Park, J.-W., & Shumaker-Parry, J. S. (2014). Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society, 136(5), 1907-1921. doi:10.1021/ja4097384 | es_ES |
dc.description.references | Martin, D. S., Cole, R. J., & Haq, S. (2003). Investigating the adsorption of oxalic acid onto Cu() to create a chemically functionalised surface. Surface Science, 539(1-3), 171-181. doi:10.1016/s0039-6028(03)00788-x | es_ES |
dc.description.references | Delgado, J. M., Berná, A., Orts, J. M., Rodes, A., & Feliu, J. M. (2007). In Situ Infrared Study of the Adsorption and Surface Acid−Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. The Journal of Physical Chemistry C, 111(27), 9943-9952. doi:10.1021/jp071489m | es_ES |
dc.description.references | Heller, A., Barkleit, A., Foerstendorf, H., Tsushima, S., Heim, K., & Bernhard, G. (2012). Curium(iii) citrate speciation in biological systems: a europium(iii) assisted spectroscopic and quantum chemical study. Dalton Transactions, 41(45), 13969. doi:10.1039/c2dt31480k | es_ES |
dc.description.references | A. Berná, A. Rodes, J.M. Feliu, An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the [01̄1] zone, Electrochimica Acta, 49 (2004) 1257–1269. | es_ES |
dc.description.references | Berná, A., Rodes, A., & Feliu, J. M. (2004). Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 563(1), 49-62. doi:10.1016/j.jelechem.2003.07.043 | es_ES |
dc.description.references | Giersig, M., & Mulvaney, P. (1993). Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 9(12), 3408-3413. doi:10.1021/la00036a014 | es_ES |
dc.description.references | Nichols, R. J., Burgess, I., Young, K. L., Zamlynny, V., & Lipkowski, J. (2004). A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. Journal of Electroanalytical Chemistry, 563(1), 33-39. doi:10.1016/j.jelechem.2003.08.007 | es_ES |
dc.description.references | Martínez-Hincapié, R., Berná, A., Rodes, A., Climent, V., & Feliu, J. M. (2016). Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO2-Containing Perchloric Acid Solutions. The Journal of Physical Chemistry C, 120(29), 16191-16199. doi:10.1021/acs.jpcc.6b00589 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |