- -

Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gisbert-González, José M. es_ES
dc.contributor.author Cheuquepán, William es_ES
dc.contributor.author Ferre Vilaplana, Adolfo es_ES
dc.contributor.author Herrero, Enrique es_ES
dc.contributor.author Feliu, Juan M. es_ES
dc.date.accessioned 2021-07-27T03:37:46Z
dc.date.available 2021-07-27T03:37:46Z
dc.date.issued 2020-10-15 es_ES
dc.identifier.issn 1572-6657 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170278
dc.description.abstract [EN] Advanced applications of colloidal nanoparticles (NPs) become to depend on their specific shape, which is controlled by the adsorption behavior of the capping agent involved in their synthesis. To understand the way in which citric acid determines the shape of gold NPs, the adsorption behavior of citrate on gold under the synthesis conditions is here investigated from electrochemical experiments on well-defined surfaces. Gibb excesses and charge numbers for the citrate adlayers deposited on the Au (111), Au(100) and Au(110) electrodes when a potential is applied were estimated at pHs 1 and 3. From these results, FTIR spectra and DFT calculations, it is concluded that solvated citrate can become simultaneously adsorbed through three dehydrogenated carboxylic groups in bidentate configuration on Au(111), but only through two on Au(100) and Au(110). As a result of this behavior, citrate can become more strongly adsorbed on Au(111) than on the other two basal planes of gold under the synthesis conditions, which would explain why tetrahedral and octahedral colloidal gold NPs are preferentially shaped when citric acid is used as the capping agent in water. This conclusion coincides with the previously one obtained on platinum, suggesting that the mechanism here described would operate also on other metals having fcc structure. es_ES
dc.description.sponsorship This work has been financially supported by the MCINN-FEDER (Spain) through project CTQ2016-76221-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Electroanalytical Chemistry es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jelechem.2020.114015 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Gisbert-González, JM.; Cheuquepán, W.; Ferre Vilaplana, A.; Herrero, E.; Feliu, JM. (2020). Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. Journal of Electroanalytical Chemistry. 875:1-11. https://doi.org/10.1016/j.jelechem.2020.114015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jelechem.2020.114015 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 875 es_ES
dc.relation.pasarela S\427482 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Vidal-Iglesias, F. J., Solla-Gullón, J., Rodrı́guez, P., Herrero, E., Montiel, V., Feliu, J. M., & Aldaz, A. (2004). Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 6(10), 1080-1084. doi:10.1016/j.elecom.2004.08.010 es_ES
dc.description.references Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29. doi:10.1016/s1748-0132(07)70016-6 es_ES
dc.description.references F. Jiao, P., Y. Zhou, H., X. Chen, L., & Yan, B. (2011). Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 18(14), 2086-2102. doi:10.2174/092986711795656199 es_ES
dc.description.references Peng, J., & Liang, X. (2019). Progress in research on gold nanoparticles in cancer management. Medicine, 98(18), e15311. doi:10.1097/md.0000000000015311 es_ES
dc.description.references Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 19(7), 1979. doi:10.3390/ijms19071979 es_ES
dc.description.references Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J., … Jiang, E. Y. (2002). Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics: Condensed Matter, 14(34), 7781-7795. doi:10.1088/0953-8984/14/34/301 es_ES
dc.description.references Zanchet, D., Tolentino, H., Martins Alves, M. C., Alves, O. L., & Ugarte, D. (2000). Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chemical Physics Letters, 323(1-2), 167-172. doi:10.1016/s0009-2614(00)00424-3 es_ES
dc.description.references Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2), 75-87. doi:10.1002/tcr.10053 es_ES
dc.description.references Li, Y., Boone, E., & El-Sayed, M. A. (2002). Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir, 18(12), 4921-4925. doi:10.1021/la011469q es_ES
dc.description.references Bard, A. J. (2010). Inner-Sphere Heterogeneous Electrode Reactions. Electrocatalysis and Photocatalysis: The Challenge. Journal of the American Chemical Society, 132(22), 7559-7567. doi:10.1021/ja101578m es_ES
dc.description.references Link, S., & El-Sayed, M. A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212-4217. doi:10.1021/jp984796o es_ES
dc.description.references Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055 es_ES
dc.description.references FRENS, G. (1973). Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 241(105), 20-22. doi:10.1038/physci241020a0 es_ES
dc.description.references Attard, G. A., Ye, J.-Y., Jenkins, P., Vidal-Iglesias, F. J., Herrero, E., & Sun, S.-G. (2013). Citrate adsorption on Pt{hkl} electrodes and its role in the formation of shaped Pt nanoparticles. Journal of Electroanalytical Chemistry, 688, 249-256. doi:10.1016/j.jelechem.2012.08.040 es_ES
dc.description.references Gisbert-González, J. M., Feliu, J. M., Ferre-Vilaplana, A., & Herrero, E. (2018). Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. The Journal of Physical Chemistry C, 122(33), 19004-19014. doi:10.1021/acs.jpcc.8b05195 es_ES
dc.description.references Lin, Y., Pan, G.-B., Su, G.-J., Fang, X.-H., Wan, L.-J., & Bai, C.-L. (2003). Study of Citrate Adsorbed on the Au(111) Surface by Scanning Probe Microscopy. Langmuir, 19(24), 10000-10003. doi:10.1021/la0350251 es_ES
dc.description.references Floate, S., Hosseini, M., Arshadi, M. R., Ritson, D., Young, K. L., & Nichols, R. J. (2003). An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. Journal of Electroanalytical Chemistry, 542, 67-74. doi:10.1016/s0022-0728(02)01451-1 es_ES
dc.description.references Kunze, J., Burgess, I., Nichols, R., Buess-Herman, C., & Lipkowski, J. (2007). Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. Journal of Electroanalytical Chemistry, 599(2), 147-159. doi:10.1016/j.jelechem.2005.12.020 es_ES
dc.description.references Rodes, A., Herrero, E., Feliu, J. M., & Aldaz, A. (1996). Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 92(20), 3769. doi:10.1039/ft9969203769 es_ES
dc.description.references Berná, A., Delgado, J. M., Orts, J. M., Rodes, A., & Feliu, J. M. (2008). Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 53(5), 2309-2321. doi:10.1016/j.electacta.2007.09.055 es_ES
dc.description.references Delgado, J. M., Orts, J. M., Pérez, J. M., & Rodes, A. (2008). Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry, 617(2), 130-140. doi:10.1016/j.jelechem.2008.01.029 es_ES
dc.description.references Wandlowski, T., Ataka, K., Pronkin, S., & Diesing, D. (2004). Surface enhanced infrared spectroscopy—Au(1 1 1-20nm)/sulphuric acid—new aspects and challenges. Electrochimica Acta, 49(8), 1233-1247. doi:10.1016/j.electacta.2003.06.002 es_ES
dc.description.references A. Rodes, Pérez, J. M., Aldaz, A, Vibrational spectroscopy, in: W.L. Vielstich, Arnold, Gasteiger, H. A. (Ed.) Handbook of Fuel Cells - Fundamentals, Technology and Applications, John Wiley & Sons, Ltd, Chichester, 2003. es_ES
dc.description.references Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452 es_ES
dc.description.references Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 es_ES
dc.description.references Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413 es_ES
dc.description.references Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015 es_ES
dc.description.references Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005 es_ES
dc.description.references Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684 es_ES
dc.description.references Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067 es_ES
dc.description.references Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108(46), 17886-17892. doi:10.1021/jp047349j es_ES
dc.description.references Narasimhan, S., & Vanderbilt, D. (1992). Elastic stress domains and the herringbone reconstruction on Au(111). Physical Review Letters, 69(10), 1564-1567. doi:10.1103/physrevlett.69.1564 es_ES
dc.description.references Harten, U., Lahee, A. M., Toennies, J. P., & Wöll, C. (1985). Observation of a Soliton Reconstruction of Au(111) by High-Resolution Helium-Atom Diffraction. Physical Review Letters, 54(24), 2619-2622. doi:10.1103/physrevlett.54.2619 es_ES
dc.description.references Needs, R. J., & Mansfield, M. (1989). Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold. Journal of Physics: Condensed Matter, 1(41), 7555-7563. doi:10.1088/0953-8984/1/41/006 es_ES
dc.description.references Kolb, D. (1996). Reconstruction phenomena at metal-electrolyte interfaces. Progress in Surface Science, 51(2), 109-173. doi:10.1016/0079-6816(96)00002-0 es_ES
dc.description.references Kolb, D. M., & Schneider, J. (1986). Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2). Electrochimica Acta, 31(8), 929-936. doi:10.1016/0013-4686(86)80005-6 es_ES
dc.description.references Shi, Z., Lipkowski, J., Gamboa, M., Zelenay, P., & Wieckowski, A. (1994). Investigations of SO42− adsorption at the Au(111) electrode by chronocoulometry and radiochemistry. Journal of Electroanalytical Chemistry, 366(1-2), 317-326. doi:10.1016/0022-0728(93)03008-d es_ES
dc.description.references Gao, X., Chang, S., Jiang, X., Hamelin, A., & Weaver, M. J. (1992). Emergence of atomic‐level structural information for ordered metal–solution interfaces: Some recent contributions from in situ infrared spectroscopy and scanning tunneling microscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 10(5), 2972-2980. doi:10.1116/1.577895 es_ES
dc.description.references Hamelin, A., Stoicoviciu, L., Edens, G. J., Gao, X., & Weaver, M. J. (1994). Some electrochemical consequences of potential-induced surface reconstruction on Au(100): Double-layer nonuniformity and electrode kinetics. Journal of Electroanalytical Chemistry, 365(1-2), 47-57. doi:10.1016/0022-0728(93)02961-g es_ES
dc.description.references Schneider, J., & Kolb, D. M. (1988). Potential-induced surface reconstruction of Au(100). Surface Science, 193(3), 579-592. doi:10.1016/0039-6028(88)90455-4 es_ES
dc.description.references Gao, X., Hamelin, A., & Weaver, M. J. (1991). Atomic relaxation at ordered electrode surfaces probed by scanning tunneling microscopy: Au(111) in aqueous solution compared with ultrahigh‐vacuum environments. The Journal of Chemical Physics, 95(9), 6993-6996. doi:10.1063/1.461043 es_ES
dc.description.references Hamm, U. W., Kramer, D., Zhai, R. S., & Kolb, D. M. (1996). The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique. Journal of Electroanalytical Chemistry, 414(1), 85-89. doi:10.1016/0022-0728(96)01006-6 es_ES
dc.description.references Chen, A., & Lipkowski, J. (1999). Electrochemical and Spectroscopic Studies of Hydroxide Adsorption at the Au(111) Electrode. The Journal of Physical Chemistry B, 103(4), 682-691. doi:10.1021/jp9836372 es_ES
dc.description.references Shi, Z., Lipkowski, J., Mirwald, S., & Pettinger, B. (1995). Electrochemical and second harmonic generation study of SO2−4 adsorption at the Au(111) electrode. Journal of Electroanalytical Chemistry, 396(1-2), 115-124. doi:10.1016/0022-0728(95)03989-t es_ES
dc.description.references Shi, Z., & Lipkowski, J. (1996). Chloride adsorption at the Au(111) electrode surface. Journal of Electroanalytical Chemistry, 403(1-2), 225-239. doi:10.1016/0022-0728(95)04313-6 es_ES
dc.description.references Van Hove, M. A., Koestner, R. J., Stair, P. C., Bibérian, J. P., Kesmodel, L. L., BartoŠ, I., & Somorjai, G. A. (1981). The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surface Science, 103(1), 189-217. doi:10.1016/0039-6028(81)90107-2 es_ES
dc.description.references Gao, X., Hamelin, A., & Weaver, M. J. (1991). Potential-dependent reconstruction at ordered Au(100)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review Letters, 67(5), 618-621. doi:10.1103/physrevlett.67.618 es_ES
dc.description.references Gao, X., Hamelin, A., & Weaver, M. J. (1992). Elucidating complex surface reconstructions with atomic-resolution scanning tunneling microscopy: Au(100)-aqueous electrochemical interface. Physical Review B, 46(11), 7096-7102. doi:10.1103/physrevb.46.7096 es_ES
dc.description.references Hamm, U. W., & Kolb, D. M. (1992). On the stability of reconstructed Au(100) surfaces in the presence of organic molecules. Journal of Electroanalytical Chemistry, 332(1-2), 339-347. doi:10.1016/0022-0728(92)80364-a es_ES
dc.description.references Gao, X., Hamelin, A., & Weaver, M. J. (1991). Reconstruction at ordered Au(110)-aqueous interfaces as probed by atomic-resolution scanning tunneling microscopy. Physical Review B, 44(19), 10983-10986. doi:10.1103/physrevb.44.10983 es_ES
dc.description.references Herzberg, G., & Crawford, B. L. (1946). Infrared and Raman Spectra of Polyatomic Molecules. The Journal of Physical Chemistry, 50(3), 288-288. doi:10.1021/j150447a021 es_ES
dc.description.references Calvante, J. J., Marinković, N. S., Kováčová, Z., & Ronald Fawcett, W. (1997). SNIFTIRS studies of the double layer at the metal/solution interface. Part 1. Single crystal gold electrodes in aqueous perchloric acid. Journal of Electroanalytical Chemistry, 421(1-2), 49-57. doi:10.1016/s0022-0728(96)04857-7 es_ES
dc.description.references Martin, R. B. (1961). A COMPLETE IONIZATION SCHEME FOR CITRIC ACID. The Journal of Physical Chemistry, 65(11), 2053-2055. doi:10.1021/j100828a032 es_ES
dc.description.references Greenler, R. G. (1966). Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics, 44(1), 310-315. doi:10.1063/1.1726462 es_ES
dc.description.references Osawa, M., Ataka, K.-I., Yoshii, K., & Nishikawa, Y. (1993). Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles. Applied Spectroscopy, 47(9), 1497-1502. doi:10.1366/0003702934067478 es_ES
dc.description.references Ataka, K., Yotsuyanagi, T., & Osawa, M. (1996). Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. The Journal of Physical Chemistry, 100(25), 10664-10672. doi:10.1021/jp953636z es_ES
dc.description.references Park, J.-W., & Shumaker-Parry, J. S. (2014). Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. Journal of the American Chemical Society, 136(5), 1907-1921. doi:10.1021/ja4097384 es_ES
dc.description.references Martin, D. S., Cole, R. J., & Haq, S. (2003). Investigating the adsorption of oxalic acid onto Cu() to create a chemically functionalised surface. Surface Science, 539(1-3), 171-181. doi:10.1016/s0039-6028(03)00788-x es_ES
dc.description.references Delgado, J. M., Berná, A., Orts, J. M., Rodes, A., & Feliu, J. M. (2007). In Situ Infrared Study of the Adsorption and Surface Acid−Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. The Journal of Physical Chemistry C, 111(27), 9943-9952. doi:10.1021/jp071489m es_ES
dc.description.references Heller, A., Barkleit, A., Foerstendorf, H., Tsushima, S., Heim, K., & Bernhard, G. (2012). Curium(iii) citrate speciation in biological systems: a europium(iii) assisted spectroscopic and quantum chemical study. Dalton Transactions, 41(45), 13969. doi:10.1039/c2dt31480k es_ES
dc.description.references A. Berná, A. Rodes, J.M. Feliu, An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the [01̄1] zone, Electrochimica Acta, 49 (2004) 1257–1269. es_ES
dc.description.references Berná, A., Rodes, A., & Feliu, J. M. (2004). Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 563(1), 49-62. doi:10.1016/j.jelechem.2003.07.043 es_ES
dc.description.references Giersig, M., & Mulvaney, P. (1993). Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir, 9(12), 3408-3413. doi:10.1021/la00036a014 es_ES
dc.description.references Nichols, R. J., Burgess, I., Young, K. L., Zamlynny, V., & Lipkowski, J. (2004). A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. Journal of Electroanalytical Chemistry, 563(1), 33-39. doi:10.1016/j.jelechem.2003.08.007 es_ES
dc.description.references Martínez-Hincapié, R., Berná, A., Rodes, A., Climent, V., & Feliu, J. M. (2016). Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO2-Containing Perchloric Acid Solutions. The Journal of Physical Chemistry C, 120(29), 16191-16199. doi:10.1021/acs.jpcc.6b00589 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem