- -

Event reconstruction for KM3NeT/ORCA using convolutional neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Event reconstruction for KM3NeT/ORCA using convolutional neural networks

Mostrar el registro completo del ítem

Aiello, S.; Albert, A.; Garre, SA.; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.... (2020). Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation. 15(10):1-34. https://doi.org/10.1088/1748-0221/15/10/P10005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170281

Ficheros en el ítem

Metadatos del ítem

Título: Event reconstruction for KM3NeT/ORCA using convolutional neural networks
Autor: Aiello, S. Albert, A. Garre, S. Alves Aly, Z. Ameli, F. Andre, M. Androulakis, G. Anghinolfi, M. Anguita, M. Anton, G. Ardid Ramírez, Miguel Aublin, J. Bagatelas, C. Barbarino, G. Baret, B. Diego-Tortosa, D. Espinosa Roselló, Víctor Martínez Mora, Juan Antonio Poirè, Chiara
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of ...[+]
Palabras clave: Cherenkov detectors , Large detector systems for particle and astroparticle physics , Neutrino detectors , Performance of High Energy Physics Detectors
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Instrumentation. (issn: 1748-0221 )
DOI: 10.1088/1748-0221/15/10/P10005
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1748-0221/15/10/P10005
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/713673/EU/Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM)./
...[+]
info:eu-repo/grantAgreement/EC/H2020/713673/EU/Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM)./
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/FR/Earth - Planets - Universe: observation, modeling, transfer/UnivEarthS/
info:eu-repo/grantAgreement/ANR//ANR-18-IDEX-0001/FR/Université de Paris/
info:eu-repo/grantAgreement/ANR//ANR-15-CE31-0020/FR/Demonstration of Ability to Establish the Mass Ordering of Neutrinos in the Sea/DAEMONS/
info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST2%2F00758/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN17%2F11620019/
info:eu-repo/grantAgreement/SRNSF//FR-18-1268/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C41/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTIMENSAJERO CON TELESCOPIOS DE NEUTRINOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C44/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UGR/
info:eu-repo/grantAgreement/Junta de Andalucía//SOMM17/6104/UGR/
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F034/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F119/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/
[-]
Agradecimientos:
The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund ...[+]
Tipo: Artículo

References

Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103

Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001

Akhmedov, E. K., Razzaque, S., & Smirnov, A. Y. (2013). Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013(2). doi:10.1007/jhep02(2013)082 [+]
Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103

Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001

Akhmedov, E. K., Razzaque, S., & Smirnov, A. Y. (2013). Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013(2). doi:10.1007/jhep02(2013)082

Tanabashi, M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., … Amsler, C. (2018). Review of Particle Physics. Physical Review D, 98(3). doi:10.1103/physrevd.98.030001

Adrián-Martínez, S., Ageron, M., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2017). Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017(5). doi:10.1007/jhep05(2017)008

Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y

Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep Learning and Its Application to LHC Physics. Annual Review of Nuclear and Particle Science, 68(1), 161-181. doi:10.1146/annurev-nucl-101917-021019

Shilon, I., Kraus, M., Büchele, M., Egberts, K., Fischer, T., Holch, T. L., … Funk, S. (2019). Application of deep learning methods to analysis of imaging atmospheric Cherenkov telescopes data. Astroparticle Physics, 105, 44-53. doi:10.1016/j.astropartphys.2018.10.003

Erdmann, M., Glombitza, J., & Walz, D. (2018). A deep learning-based reconstruction of cosmic ray-induced air showers. Astroparticle Physics, 97, 46-53. doi:10.1016/j.astropartphys.2017.10.006

Huennefeld, M. (2017). Deep Learning in Physics exemplified by the Reconstruction of Muon-Neutrino Events in IceCube. Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017). doi:10.22323/1.301.1057

Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M. D., Niner, E., … Vahle, P. (2016). A convolutional neural network neutrino event classifier. Journal of Instrumentation, 11(09), P09001-P09001. doi:10.1088/1748-0221/11/09/p09001

Ageron, M., Aiello, S., Ameli, F., Andre, M., Androulakis, G., Anghinolfi, M., … Bagatelas, C. (2020). Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. The European Physical Journal C, 80(2). doi:10.1140/epjc/s10052-020-7629-z

Honda, M., Athar, M. S., Kajita, T., Kasahara, K., & Midorikawa, S. (2015). Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Physical Review D, 92(2). doi:10.1103/physrevd.92.023004

Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014

Aiello, S., Akrame, S. E., Ameli, F., Anassontzis, E. G., Andre, M., Androulakis, G., … Aublin, J. (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 13(05), P05035-P05035. doi:10.1088/1748-0221/13/05/p05035

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable Parallel Programming with CUDA. Queue, 6(2), 40-53. doi:10.1145/1365490.1365500

Baldi, P., Bian, J., Hertel, L., & Li, L. (2019). Improved energy reconstruction in NOvA with regression convolutional neural networks. Physical Review D, 99(1). doi:10.1103/physrevd.99.012011

GEARY, R. C. (1935). THE RATIO OF THE MEAN DEVIATION TO THE STANDARD DEVIATION AS A TEST OF NORMALITY. Biometrika, 27(3-4), 310-332. doi:10.1093/biomet/27.3-4.310

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem