Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103
Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001
Akhmedov, E. K., Razzaque, S., & Smirnov, A. Y. (2013). Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013(2). doi:10.1007/jhep02(2013)082
[+]
Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103
Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001
Akhmedov, E. K., Razzaque, S., & Smirnov, A. Y. (2013). Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013(2). doi:10.1007/jhep02(2013)082
Tanabashi, M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., … Amsler, C. (2018). Review of Particle Physics. Physical Review D, 98(3). doi:10.1103/physrevd.98.030001
Adrián-Martínez, S., Ageron, M., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2017). Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017(5). doi:10.1007/jhep05(2017)008
Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y
Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep Learning and Its Application to LHC Physics. Annual Review of Nuclear and Particle Science, 68(1), 161-181. doi:10.1146/annurev-nucl-101917-021019
Shilon, I., Kraus, M., Büchele, M., Egberts, K., Fischer, T., Holch, T. L., … Funk, S. (2019). Application of deep learning methods to analysis of imaging atmospheric Cherenkov telescopes data. Astroparticle Physics, 105, 44-53. doi:10.1016/j.astropartphys.2018.10.003
Erdmann, M., Glombitza, J., & Walz, D. (2018). A deep learning-based reconstruction of cosmic ray-induced air showers. Astroparticle Physics, 97, 46-53. doi:10.1016/j.astropartphys.2017.10.006
Huennefeld, M. (2017). Deep Learning in Physics exemplified by the Reconstruction of Muon-Neutrino Events in IceCube. Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017). doi:10.22323/1.301.1057
Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M. D., Niner, E., … Vahle, P. (2016). A convolutional neural network neutrino event classifier. Journal of Instrumentation, 11(09), P09001-P09001. doi:10.1088/1748-0221/11/09/p09001
Ageron, M., Aiello, S., Ameli, F., Andre, M., Androulakis, G., Anghinolfi, M., … Bagatelas, C. (2020). Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. The European Physical Journal C, 80(2). doi:10.1140/epjc/s10052-020-7629-z
Honda, M., Athar, M. S., Kajita, T., Kasahara, K., & Midorikawa, S. (2015). Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Physical Review D, 92(2). doi:10.1103/physrevd.92.023004
Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014
Aiello, S., Akrame, S. E., Ameli, F., Anassontzis, E. G., Andre, M., Androulakis, G., … Aublin, J. (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 13(05), P05035-P05035. doi:10.1088/1748-0221/13/05/p05035
Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable Parallel Programming with CUDA. Queue, 6(2), 40-53. doi:10.1145/1365490.1365500
Baldi, P., Bian, J., Hertel, L., & Li, L. (2019). Improved energy reconstruction in NOvA with regression convolutional neural networks. Physical Review D, 99(1). doi:10.1103/physrevd.99.012011
GEARY, R. C. (1935). THE RATIO OF THE MEAN DEVIATION TO THE STANDARD DEVIATION AS A TEST OF NORMALITY. Biometrika, 27(3-4), 310-332. doi:10.1093/biomet/27.3-4.310
[-]