Mostrar el registro sencillo del ítem
dc.contributor.author | Aiello, S. | es_ES |
dc.contributor.author | Albert, A. | es_ES |
dc.contributor.author | Garre, S. Alves | es_ES |
dc.contributor.author | Aly, Z. | es_ES |
dc.contributor.author | Ameli, F. | es_ES |
dc.contributor.author | Andre, M. | es_ES |
dc.contributor.author | Androulakis, G. | es_ES |
dc.contributor.author | Anghinolfi, M. | es_ES |
dc.contributor.author | Anguita, M. | es_ES |
dc.contributor.author | Anton, G. | es_ES |
dc.contributor.author | Ardid Ramírez, Miguel | es_ES |
dc.contributor.author | Aublin, J. | es_ES |
dc.contributor.author | Bagatelas, C. | es_ES |
dc.contributor.author | Barbarino, G. | es_ES |
dc.contributor.author | Baret, B. | es_ES |
dc.contributor.author | Diego-Tortosa, D. | es_ES |
dc.contributor.author | Espinosa Roselló, Víctor | es_ES |
dc.contributor.author | Martínez Mora, Juan Antonio | es_ES |
dc.contributor.author | Poirè, Chiara | es_ES |
dc.date.accessioned | 2021-07-27T03:37:55Z | |
dc.date.available | 2021-07-27T03:37:55Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1748-0221 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170281 | |
dc.description.abstract | [EN] The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Professional Training, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Instrumentation | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cherenkov detectors | es_ES |
dc.subject | Large detector systems for particle and astroparticle physics | es_ES |
dc.subject | Neutrino detectors | es_ES |
dc.subject | Performance of High Energy Physics Detectors | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Event reconstruction for KM3NeT/ORCA using convolutional neural networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1748-0221/15/10/P10005 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/713673/EU/Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM)./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/FR/Earth - Planets - Universe: observation, modeling, transfer/UnivEarthS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-18-IDEX-0001/FR/Université de Paris/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-15-CE31-0020/FR/Demonstration of Ability to Establish the Mass Ordering of Neutrinos in the Sea/DAEMONS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST2%2F00758/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN17%2F11620019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SRNSF//FR-18-1268/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C41/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTIMENSAJERO CON TELESCOPIOS DE NEUTRINOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C44/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UGR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//SOMM17/6104/UGR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F034/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F119/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Aiello, S.; Albert, A.; Garre, SA.; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.... (2020). Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation. 15(10):1-34. https://doi.org/10.1088/1748-0221/15/10/P10005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1748-0221/15/10/P10005 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 34 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\430796 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Institut Universitaire de France | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Instituto Nazionale di Fisica Nucleare | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Shota Rustaveli National Science Foundation | es_ES |
dc.contributor.funder | Netherlands Organization for Scientific Research | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | National Authority for Scientific Research, Rumanía | es_ES |
dc.contributor.funder | General Secretariat for Research and Technology, Grecia | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.contributor.funder | Ministero dell'Istruzione dell'Università e della Ricerca, Italia | es_ES |
dc.contributor.funder | Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos | es_ES |
dc.description.references | Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 | es_ES |
dc.description.references | Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001 | es_ES |
dc.description.references | Akhmedov, E. K., Razzaque, S., & Smirnov, A. Y. (2013). Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013(2). doi:10.1007/jhep02(2013)082 | es_ES |
dc.description.references | Tanabashi, M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., … Amsler, C. (2018). Review of Particle Physics. Physical Review D, 98(3). doi:10.1103/physrevd.98.030001 | es_ES |
dc.description.references | Adrián-Martínez, S., Ageron, M., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2017). Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017(5). doi:10.1007/jhep05(2017)008 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |
dc.description.references | Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y | es_ES |
dc.description.references | Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep Learning and Its Application to LHC Physics. Annual Review of Nuclear and Particle Science, 68(1), 161-181. doi:10.1146/annurev-nucl-101917-021019 | es_ES |
dc.description.references | Shilon, I., Kraus, M., Büchele, M., Egberts, K., Fischer, T., Holch, T. L., … Funk, S. (2019). Application of deep learning methods to analysis of imaging atmospheric Cherenkov telescopes data. Astroparticle Physics, 105, 44-53. doi:10.1016/j.astropartphys.2018.10.003 | es_ES |
dc.description.references | Erdmann, M., Glombitza, J., & Walz, D. (2018). A deep learning-based reconstruction of cosmic ray-induced air showers. Astroparticle Physics, 97, 46-53. doi:10.1016/j.astropartphys.2017.10.006 | es_ES |
dc.description.references | Huennefeld, M. (2017). Deep Learning in Physics exemplified by the Reconstruction of Muon-Neutrino Events in IceCube. Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017). doi:10.22323/1.301.1057 | es_ES |
dc.description.references | Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M. D., Niner, E., … Vahle, P. (2016). A convolutional neural network neutrino event classifier. Journal of Instrumentation, 11(09), P09001-P09001. doi:10.1088/1748-0221/11/09/p09001 | es_ES |
dc.description.references | Ageron, M., Aiello, S., Ameli, F., Andre, M., Androulakis, G., Anghinolfi, M., … Bagatelas, C. (2020). Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. The European Physical Journal C, 80(2). doi:10.1140/epjc/s10052-020-7629-z | es_ES |
dc.description.references | Honda, M., Athar, M. S., Kajita, T., Kasahara, K., & Midorikawa, S. (2015). Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Physical Review D, 92(2). doi:10.1103/physrevd.92.023004 | es_ES |
dc.description.references | Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014 | es_ES |
dc.description.references | Aiello, S., Akrame, S. E., Ameli, F., Anassontzis, E. G., Andre, M., Androulakis, G., … Aublin, J. (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 13(05), P05035-P05035. doi:10.1088/1748-0221/13/05/p05035 | es_ES |
dc.description.references | Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable Parallel Programming with CUDA. Queue, 6(2), 40-53. doi:10.1145/1365490.1365500 | es_ES |
dc.description.references | Baldi, P., Bian, J., Hertel, L., & Li, L. (2019). Improved energy reconstruction in NOvA with regression convolutional neural networks. Physical Review D, 99(1). doi:10.1103/physrevd.99.012011 | es_ES |
dc.description.references | GEARY, R. C. (1935). THE RATIO OF THE MEAN DEVIATION TO THE STANDARD DEVIATION AS A TEST OF NORMALITY. Biometrika, 27(3-4), 310-332. doi:10.1093/biomet/27.3-4.310 | es_ES |