- -

Event reconstruction for KM3NeT/ORCA using convolutional neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Event reconstruction for KM3NeT/ORCA using convolutional neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aiello, S. es_ES
dc.contributor.author Albert, A. es_ES
dc.contributor.author Garre, S. Alves es_ES
dc.contributor.author Aly, Z. es_ES
dc.contributor.author Ameli, F. es_ES
dc.contributor.author Andre, M. es_ES
dc.contributor.author Androulakis, G. es_ES
dc.contributor.author Anghinolfi, M. es_ES
dc.contributor.author Anguita, M. es_ES
dc.contributor.author Anton, G. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Aublin, J. es_ES
dc.contributor.author Bagatelas, C. es_ES
dc.contributor.author Barbarino, G. es_ES
dc.contributor.author Baret, B. es_ES
dc.contributor.author Diego-Tortosa, D. es_ES
dc.contributor.author Espinosa Roselló, Víctor es_ES
dc.contributor.author Martínez Mora, Juan Antonio es_ES
dc.contributor.author Poirè, Chiara es_ES
dc.date.accessioned 2021-07-27T03:37:55Z
dc.date.available 2021-07-27T03:37:55Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 1748-0221 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170281
dc.description.abstract [EN] The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Professional Training, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Instrumentation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cherenkov detectors es_ES
dc.subject Large detector systems for particle and astroparticle physics es_ES
dc.subject Neutrino detectors es_ES
dc.subject Performance of High Energy Physics Detectors es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Event reconstruction for KM3NeT/ORCA using convolutional neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1748-0221/15/10/P10005 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713673/EU/Innovative doctoral programme for talented early-stage researchers in Spanish host organisations excellent in the areas of Science, Technology, Engineering and Mathematics (STEM)./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0023/FR/Earth - Planets - Universe: observation, modeling, transfer/UnivEarthS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-IDEX-0001/FR/Université de Paris/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-15-CE31-0020/FR/Demonstration of Ability to Establish the Mass Ordering of Neutrinos in the Sea/DAEMONS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST2%2F00758/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN17%2F11620019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SRNSF//FR-18-1268/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C41/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTIMENSAJERO CON TELESCOPIOS DE NEUTRINOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C44/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UGR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//SOMM17/6104/UGR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F034/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F119/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Aiello, S.; Albert, A.; Garre, SA.; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.... (2020). Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation. 15(10):1-34. https://doi.org/10.1088/1748-0221/15/10/P10005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1748-0221/15/10/P10005 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 34 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\430796 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Institut Universitaire de France es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Instituto Nazionale di Fisica Nucleare es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Shota Rustaveli National Science Foundation es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder National Authority for Scientific Research, Rumanía es_ES
dc.contributor.funder General Secretariat for Research and Technology, Grecia es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Ministero dell'Istruzione dell'Università e della Ricerca, Italia es_ES
dc.contributor.funder Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos es_ES
dc.description.references Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 es_ES
dc.description.references Adrián-Martínez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 43(8), 084001. doi:10.1088/0954-3899/43/8/084001 es_ES
dc.description.references Akhmedov, E. K., Razzaque, S., & Smirnov, A. Y. (2013). Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013(2). doi:10.1007/jhep02(2013)082 es_ES
dc.description.references Tanabashi, M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., … Amsler, C. (2018). Review of Particle Physics. Physical Review D, 98(3). doi:10.1103/physrevd.98.030001 es_ES
dc.description.references Adrián-Martínez, S., Ageron, M., Aiello, S., Albert, A., Ameli, F., … Anghinolfi, M. (2017). Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017(5). doi:10.1007/jhep05(2017)008 es_ES
dc.description.references Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 es_ES
dc.description.references Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y es_ES
dc.description.references Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep Learning and Its Application to LHC Physics. Annual Review of Nuclear and Particle Science, 68(1), 161-181. doi:10.1146/annurev-nucl-101917-021019 es_ES
dc.description.references Shilon, I., Kraus, M., Büchele, M., Egberts, K., Fischer, T., Holch, T. L., … Funk, S. (2019). Application of deep learning methods to analysis of imaging atmospheric Cherenkov telescopes data. Astroparticle Physics, 105, 44-53. doi:10.1016/j.astropartphys.2018.10.003 es_ES
dc.description.references Erdmann, M., Glombitza, J., & Walz, D. (2018). A deep learning-based reconstruction of cosmic ray-induced air showers. Astroparticle Physics, 97, 46-53. doi:10.1016/j.astropartphys.2017.10.006 es_ES
dc.description.references Huennefeld, M. (2017). Deep Learning in Physics exemplified by the Reconstruction of Muon-Neutrino Events in IceCube. Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017). doi:10.22323/1.301.1057 es_ES
dc.description.references Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M. D., Niner, E., … Vahle, P. (2016). A convolutional neural network neutrino event classifier. Journal of Instrumentation, 11(09), P09001-P09001. doi:10.1088/1748-0221/11/09/p09001 es_ES
dc.description.references Ageron, M., Aiello, S., Ameli, F., Andre, M., Androulakis, G., Anghinolfi, M., … Bagatelas, C. (2020). Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. The European Physical Journal C, 80(2). doi:10.1140/epjc/s10052-020-7629-z es_ES
dc.description.references Honda, M., Athar, M. S., Kajita, T., Kasahara, K., & Midorikawa, S. (2015). Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Physical Review D, 92(2). doi:10.1103/physrevd.92.023004 es_ES
dc.description.references Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014 es_ES
dc.description.references Aiello, S., Akrame, S. E., Ameli, F., Anassontzis, E. G., Andre, M., Androulakis, G., … Aublin, J. (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 13(05), P05035-P05035. doi:10.1088/1748-0221/13/05/p05035 es_ES
dc.description.references Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable Parallel Programming with CUDA. Queue, 6(2), 40-53. doi:10.1145/1365490.1365500 es_ES
dc.description.references Baldi, P., Bian, J., Hertel, L., & Li, L. (2019). Improved energy reconstruction in NOvA with regression convolutional neural networks. Physical Review D, 99(1). doi:10.1103/physrevd.99.012011 es_ES
dc.description.references GEARY, R. C. (1935). THE RATIO OF THE MEAN DEVIATION TO THE STANDARD DEVIATION AS A TEST OF NORMALITY. Biometrika, 27(3-4), 310-332. doi:10.1093/biomet/27.3-4.310 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem