- -

High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K

Mostrar el registro completo del ítem

Ortiz, V.; Salvador Igual, I.; Del Tejo Catalá, O.; Perez-Cortes, J. (2020). High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K. Journal of imaging. 6(12):1-17. https://doi.org/10.3390/jimaging6120142

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170286

Ficheros en el ítem

Metadatos del ítem

Título: High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K
Autor: ORTIZ, V. Salvador Igual, Ismael Del Tejo Catalá, Omar Perez-Cortes, Juan-Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Vulnerable Road User (VRU) detection is a major application of object detection with the aim of helping reduce accidents in advanced driver-assistance systems and enabling the development of autonomous vehicles. Due ...[+]
Palabras clave: On-road detection , Artificial intelligence , Machine learning , Convolutional neural networks , Resource-constrained hardware , One-stage detectors , Advanced driver-assistance systems , Vulnerable road users
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of imaging. (eissn: 2313-433X )
DOI: 10.3390/jimaging6120142
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/jimaging6120142
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/783190/EU/Programmable Systems for Intelligence in Automobiles/
Agradecimientos:
PRYSTINE has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union's H2020 Framework Program and National Authorities, ...[+]
Tipo: Artículo

References

Constant, A., & Lagarde, E. (2010). Protecting Vulnerable Road Users from Injury. PLoS Medicine, 7(3), e1000228. doi:10.1371/journal.pmed.1000228

Bassani, M., Rossetti, L., & Catani, L. (2020). Spatial analysis of road crashes involving vulnerable road users in support of road safety management strategies. Transportation Research Procedia, 45, 394-401. doi:10.1016/j.trpro.2020.03.031

Zhang, S., Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2018). Towards Reaching Human Performance in Pedestrian Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 973-986. doi:10.1109/tpami.2017.2700460 [+]
Constant, A., & Lagarde, E. (2010). Protecting Vulnerable Road Users from Injury. PLoS Medicine, 7(3), e1000228. doi:10.1371/journal.pmed.1000228

Bassani, M., Rossetti, L., & Catani, L. (2020). Spatial analysis of road crashes involving vulnerable road users in support of road safety management strategies. Transportation Research Procedia, 45, 394-401. doi:10.1016/j.trpro.2020.03.031

Zhang, S., Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2018). Towards Reaching Human Performance in Pedestrian Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 973-986. doi:10.1109/tpami.2017.2700460

Viola, P., Jones, M. J., & Snow, D. (2005). Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision, 63(2), 153-161. doi:10.1007/s11263-005-6644-8

Dollar, P., Tu, Z., Perona, P., & Belongie, S. (2009). Integral Channel Features. Procedings of the British Machine Vision Conference 2009. doi:10.5244/c.23.91

Dollar, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1532-1545. doi:10.1109/tpami.2014.2300479

Pae, D. S., Choi, I. H., Kang, T. K., & Lim, M. T. (2018). Vehicle detection framework for challenging lighting driving environment based on feature fusion method using adaptive neuro-fuzzy inference system. International Journal of Advanced Robotic Systems, 15(2), 172988141877054. doi:10.1177/1729881418770545

Murugan, V., & Vijaykumar, V. R. (2018). Automatic Moving Vehicle Detection and Classification Based on Artificial Neural Fuzzy Inference System. Wireless Personal Communications, 100(3), 745-766. doi:10.1007/s11277-018-5347-8

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. doi:10.1109/tpami.2016.2577031

Liu, Z., Chen, Z., Li, Z., & Hu, W. (2018). An Efficient Pedestrian Detection Method Based on YOLOv2. Mathematical Problems in Engineering, 2018, 1-10. doi:10.1155/2018/3518959

Lan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian Detection Based on YOLO Network Model. 2018 IEEE International Conference on Mechatronics and Automation (ICMA). doi:10.1109/icma.2018.8484698

Ortiz Castelló, V., del Tejo Catalá, O., Salvador Igual, I., & Perez-Cortes, J.-C. (2020). Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases. International Journal of Advanced Robotic Systems, 17(5), 172988142092917. doi:10.1177/1729881420929175

Cao, J., Song, C., Peng, S., Song, S., Zhang, X., Shao, Y., & Xiao, F. (2020). Pedestrian Detection Algorithm for Intelligent Vehicles in Complex Scenarios. Sensors, 20(13), 3646. doi:10.3390/s20133646

Li, X., Liu, Y., Zhao, Z., Zhang, Y., & He, L. (2018). A Deep Learning Approach of Vehicle Multitarget Detection from Traffic Video. Journal of Advanced Transportation, 2018, 1-11. doi:10.1155/2018/7075814

Huang, Y.-Q., Zheng, J.-C., Sun, S.-D., Yang, C.-F., & Liu, J. (2020). Optimized YOLOv3 Algorithm and Its Application in Traffic Flow Detections. Applied Sciences, 10(9), 3079. doi:10.3390/app10093079

Jamtsho, Y., Riyamongkol, P., & Waranusast, R. (2021). Real-time license plate detection for non-helmeted motorcyclist using YOLO. ICT Express, 7(1), 104-109. doi:10.1016/j.icte.2020.07.008

Druml, N., Macher, G., Stolz, M., Armengaud, E., Watzenig, D., Steger, C., … Roedig, H. (2018). PRYSTINE - PRogrammable sYSTems for INtelligence in AutomobilEs. 2018 21st Euromicro Conference on Digital System Design (DSD). doi:10.1109/dsd.2018.00107

Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743-761. doi:10.1109/tpami.2011.155

Yolo v4, v3 and v2 for Windows and Linuxhttps://github.com/AlexeyAB/darknet

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem