- -

High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author ORTIZ, V. es_ES
dc.contributor.author Salvador Igual, Ismael es_ES
dc.contributor.author Del Tejo Catalá, Omar es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2021-07-27T03:38:05Z
dc.date.available 2021-07-27T03:38:05Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170286
dc.description.abstract [EN] Vulnerable Road User (VRU) detection is a major application of object detection with the aim of helping reduce accidents in advanced driver-assistance systems and enabling the development of autonomous vehicles. Due to intrinsic complexity present in computer vision and to limitations in processing capacity and bandwidth, this task has not been completely solved nowadays. For these reasons, the well established YOLOv3 net and the new YOLOv4 one are assessed by training them on a huge, recent on-road image dataset (BDD100K), both for VRU and full on-road classes, with a great improvement in terms of detection quality when compared to their MS-COCO-trained generic correspondent models from the authors but with negligible costs in forward pass time. Additionally, some models were retrained when replacing the original Leaky ReLU convolutional activation functions from original YOLO implementation with two cutting-edge activation functions: the self-regularized non-monotonic function (MISH) and its self-gated counterpart (SWISH), with significant improvements with respect to the original activation function detection performance. Additionally, some trials were carried out including recent data augmentation techniques (mosaic and cutmix) and some grid size configurations, with cumulative improvements over the previous results, comprising different performance-throughput trade-offs. es_ES
dc.description.sponsorship PRYSTINE has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union's H2020 Framework Program and National Authorities, under Grant No. 783190. It has also been funded by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial-IVACE". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Journal of imaging es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject On-road detection es_ES
dc.subject Artificial intelligence es_ES
dc.subject Machine learning es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Resource-constrained hardware es_ES
dc.subject One-stage detectors es_ES
dc.subject Advanced driver-assistance systems es_ES
dc.subject Vulnerable road users es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jimaging6120142 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/783190/EU/Programmable Systems for Intelligence in Automobiles/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Ortiz, V.; Salvador Igual, I.; Del Tejo Catalá, O.; Perez-Cortes, J. (2020). High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K. Journal of imaging. 6(12):1-17. https://doi.org/10.3390/jimaging6120142 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jimaging6120142 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2313-433X es_ES
dc.relation.pasarela S\424474 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.description.references Constant, A., & Lagarde, E. (2010). Protecting Vulnerable Road Users from Injury. PLoS Medicine, 7(3), e1000228. doi:10.1371/journal.pmed.1000228 es_ES
dc.description.references Bassani, M., Rossetti, L., & Catani, L. (2020). Spatial analysis of road crashes involving vulnerable road users in support of road safety management strategies. Transportation Research Procedia, 45, 394-401. doi:10.1016/j.trpro.2020.03.031 es_ES
dc.description.references Zhang, S., Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2018). Towards Reaching Human Performance in Pedestrian Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 973-986. doi:10.1109/tpami.2017.2700460 es_ES
dc.description.references Viola, P., Jones, M. J., & Snow, D. (2005). Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision, 63(2), 153-161. doi:10.1007/s11263-005-6644-8 es_ES
dc.description.references Dollar, P., Tu, Z., Perona, P., & Belongie, S. (2009). Integral Channel Features. Procedings of the British Machine Vision Conference 2009. doi:10.5244/c.23.91 es_ES
dc.description.references Dollar, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1532-1545. doi:10.1109/tpami.2014.2300479 es_ES
dc.description.references Pae, D. S., Choi, I. H., Kang, T. K., & Lim, M. T. (2018). Vehicle detection framework for challenging lighting driving environment based on feature fusion method using adaptive neuro-fuzzy inference system. International Journal of Advanced Robotic Systems, 15(2), 172988141877054. doi:10.1177/1729881418770545 es_ES
dc.description.references Murugan, V., & Vijaykumar, V. R. (2018). Automatic Moving Vehicle Detection and Classification Based on Artificial Neural Fuzzy Inference System. Wireless Personal Communications, 100(3), 745-766. doi:10.1007/s11277-018-5347-8 es_ES
dc.description.references Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. doi:10.1109/tpami.2016.2577031 es_ES
dc.description.references Liu, Z., Chen, Z., Li, Z., & Hu, W. (2018). An Efficient Pedestrian Detection Method Based on YOLOv2. Mathematical Problems in Engineering, 2018, 1-10. doi:10.1155/2018/3518959 es_ES
dc.description.references Lan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian Detection Based on YOLO Network Model. 2018 IEEE International Conference on Mechatronics and Automation (ICMA). doi:10.1109/icma.2018.8484698 es_ES
dc.description.references Ortiz Castelló, V., del Tejo Catalá, O., Salvador Igual, I., & Perez-Cortes, J.-C. (2020). Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases. International Journal of Advanced Robotic Systems, 17(5), 172988142092917. doi:10.1177/1729881420929175 es_ES
dc.description.references Cao, J., Song, C., Peng, S., Song, S., Zhang, X., Shao, Y., & Xiao, F. (2020). Pedestrian Detection Algorithm for Intelligent Vehicles in Complex Scenarios. Sensors, 20(13), 3646. doi:10.3390/s20133646 es_ES
dc.description.references Li, X., Liu, Y., Zhao, Z., Zhang, Y., & He, L. (2018). A Deep Learning Approach of Vehicle Multitarget Detection from Traffic Video. Journal of Advanced Transportation, 2018, 1-11. doi:10.1155/2018/7075814 es_ES
dc.description.references Huang, Y.-Q., Zheng, J.-C., Sun, S.-D., Yang, C.-F., & Liu, J. (2020). Optimized YOLOv3 Algorithm and Its Application in Traffic Flow Detections. Applied Sciences, 10(9), 3079. doi:10.3390/app10093079 es_ES
dc.description.references Jamtsho, Y., Riyamongkol, P., & Waranusast, R. (2021). Real-time license plate detection for non-helmeted motorcyclist using YOLO. ICT Express, 7(1), 104-109. doi:10.1016/j.icte.2020.07.008 es_ES
dc.description.references Druml, N., Macher, G., Stolz, M., Armengaud, E., Watzenig, D., Steger, C., … Roedig, H. (2018). PRYSTINE - PRogrammable sYSTems for INtelligence in AutomobilEs. 2018 21st Euromicro Conference on Digital System Design (DSD). doi:10.1109/dsd.2018.00107 es_ES
dc.description.references Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743-761. doi:10.1109/tpami.2011.155 es_ES
dc.description.references Yolo v4, v3 and v2 for Windows and Linuxhttps://github.com/AlexeyAB/darknet es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem