Mostrar el registro sencillo del ítem
dc.contributor.author | ORTIZ, V. | es_ES |
dc.contributor.author | Salvador Igual, Ismael | es_ES |
dc.contributor.author | Del Tejo Catalá, Omar | es_ES |
dc.contributor.author | Perez-Cortes, Juan-Carlos | es_ES |
dc.date.accessioned | 2021-07-27T03:38:05Z | |
dc.date.available | 2021-07-27T03:38:05Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170286 | |
dc.description.abstract | [EN] Vulnerable Road User (VRU) detection is a major application of object detection with the aim of helping reduce accidents in advanced driver-assistance systems and enabling the development of autonomous vehicles. Due to intrinsic complexity present in computer vision and to limitations in processing capacity and bandwidth, this task has not been completely solved nowadays. For these reasons, the well established YOLOv3 net and the new YOLOv4 one are assessed by training them on a huge, recent on-road image dataset (BDD100K), both for VRU and full on-road classes, with a great improvement in terms of detection quality when compared to their MS-COCO-trained generic correspondent models from the authors but with negligible costs in forward pass time. Additionally, some models were retrained when replacing the original Leaky ReLU convolutional activation functions from original YOLO implementation with two cutting-edge activation functions: the self-regularized non-monotonic function (MISH) and its self-gated counterpart (SWISH), with significant improvements with respect to the original activation function detection performance. Additionally, some trials were carried out including recent data augmentation techniques (mosaic and cutmix) and some grid size configurations, with cumulative improvements over the previous results, comprising different performance-throughput trade-offs. | es_ES |
dc.description.sponsorship | PRYSTINE has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union's H2020 Framework Program and National Authorities, under Grant No. 783190. It has also been funded by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial-IVACE". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Journal of imaging | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | On-road detection | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Resource-constrained hardware | es_ES |
dc.subject | One-stage detectors | es_ES |
dc.subject | Advanced driver-assistance systems | es_ES |
dc.subject | Vulnerable road users | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/jimaging6120142 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/783190/EU/Programmable Systems for Intelligence in Automobiles/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Ortiz, V.; Salvador Igual, I.; Del Tejo Catalá, O.; Perez-Cortes, J. (2020). High-Profile VRU Detection on Resource-Constrained Hardware Using YOLOv3/v4 on BDD100K. Journal of imaging. 6(12):1-17. https://doi.org/10.3390/jimaging6120142 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/jimaging6120142 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2313-433X | es_ES |
dc.relation.pasarela | S\424474 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.description.references | Constant, A., & Lagarde, E. (2010). Protecting Vulnerable Road Users from Injury. PLoS Medicine, 7(3), e1000228. doi:10.1371/journal.pmed.1000228 | es_ES |
dc.description.references | Bassani, M., Rossetti, L., & Catani, L. (2020). Spatial analysis of road crashes involving vulnerable road users in support of road safety management strategies. Transportation Research Procedia, 45, 394-401. doi:10.1016/j.trpro.2020.03.031 | es_ES |
dc.description.references | Zhang, S., Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2018). Towards Reaching Human Performance in Pedestrian Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 973-986. doi:10.1109/tpami.2017.2700460 | es_ES |
dc.description.references | Viola, P., Jones, M. J., & Snow, D. (2005). Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision, 63(2), 153-161. doi:10.1007/s11263-005-6644-8 | es_ES |
dc.description.references | Dollar, P., Tu, Z., Perona, P., & Belongie, S. (2009). Integral Channel Features. Procedings of the British Machine Vision Conference 2009. doi:10.5244/c.23.91 | es_ES |
dc.description.references | Dollar, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1532-1545. doi:10.1109/tpami.2014.2300479 | es_ES |
dc.description.references | Pae, D. S., Choi, I. H., Kang, T. K., & Lim, M. T. (2018). Vehicle detection framework for challenging lighting driving environment based on feature fusion method using adaptive neuro-fuzzy inference system. International Journal of Advanced Robotic Systems, 15(2), 172988141877054. doi:10.1177/1729881418770545 | es_ES |
dc.description.references | Murugan, V., & Vijaykumar, V. R. (2018). Automatic Moving Vehicle Detection and Classification Based on Artificial Neural Fuzzy Inference System. Wireless Personal Communications, 100(3), 745-766. doi:10.1007/s11277-018-5347-8 | es_ES |
dc.description.references | Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. doi:10.1109/tpami.2016.2577031 | es_ES |
dc.description.references | Liu, Z., Chen, Z., Li, Z., & Hu, W. (2018). An Efficient Pedestrian Detection Method Based on YOLOv2. Mathematical Problems in Engineering, 2018, 1-10. doi:10.1155/2018/3518959 | es_ES |
dc.description.references | Lan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian Detection Based on YOLO Network Model. 2018 IEEE International Conference on Mechatronics and Automation (ICMA). doi:10.1109/icma.2018.8484698 | es_ES |
dc.description.references | Ortiz Castelló, V., del Tejo Catalá, O., Salvador Igual, I., & Perez-Cortes, J.-C. (2020). Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases. International Journal of Advanced Robotic Systems, 17(5), 172988142092917. doi:10.1177/1729881420929175 | es_ES |
dc.description.references | Cao, J., Song, C., Peng, S., Song, S., Zhang, X., Shao, Y., & Xiao, F. (2020). Pedestrian Detection Algorithm for Intelligent Vehicles in Complex Scenarios. Sensors, 20(13), 3646. doi:10.3390/s20133646 | es_ES |
dc.description.references | Li, X., Liu, Y., Zhao, Z., Zhang, Y., & He, L. (2018). A Deep Learning Approach of Vehicle Multitarget Detection from Traffic Video. Journal of Advanced Transportation, 2018, 1-11. doi:10.1155/2018/7075814 | es_ES |
dc.description.references | Huang, Y.-Q., Zheng, J.-C., Sun, S.-D., Yang, C.-F., & Liu, J. (2020). Optimized YOLOv3 Algorithm and Its Application in Traffic Flow Detections. Applied Sciences, 10(9), 3079. doi:10.3390/app10093079 | es_ES |
dc.description.references | Jamtsho, Y., Riyamongkol, P., & Waranusast, R. (2021). Real-time license plate detection for non-helmeted motorcyclist using YOLO. ICT Express, 7(1), 104-109. doi:10.1016/j.icte.2020.07.008 | es_ES |
dc.description.references | Druml, N., Macher, G., Stolz, M., Armengaud, E., Watzenig, D., Steger, C., … Roedig, H. (2018). PRYSTINE - PRogrammable sYSTems for INtelligence in AutomobilEs. 2018 21st Euromicro Conference on Digital System Design (DSD). doi:10.1109/dsd.2018.00107 | es_ES |
dc.description.references | Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743-761. doi:10.1109/tpami.2011.155 | es_ES |
dc.description.references | Yolo v4, v3 and v2 for Windows and Linuxhttps://github.com/AlexeyAB/darknet | es_ES |