- -

Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baeza-Brotons, Francisco es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Galao, Oscar es_ES
dc.contributor.author Alberti, Marcos G. es_ES
dc.contributor.author Garcés, Pedro es_ES
dc.date.accessioned 2021-07-28T03:30:51Z
dc.date.available 2021-07-28T03:30:51Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170576
dc.description.abstract [EN] This paper proposes binary and ternary combinations of sewage sludge ash (SSA) with fly ash (FA), marble dust (MD) and rice husk ash (RHA) as partial replacements of Portland cement in concretes with a similar dosage to that used in precast blocks, with very dry consistency. Several physical-mechanical tests were carried out on concrete specimens with curing ages of 28 and 90 days: density, water absorption, capillary water absorption, ultrasonic pulse velocity and compressive strength. The combinations of residues significantly improve the properties of the cementitious systems: 30% replacement of Portland cement provides strength values similar to the reference sample, showing the synergetic effects of the combination of the mineral additions. The significance of this research relies on the combined use of the mineral additions as well as the use of them for the precast block industry. The results show synergies among the additions and even that some of them showed relevant improvements when they are used in combination, performing better than when used individually. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Waste valorisation es_ES
dc.subject Concrete block es_ES
dc.subject Marble dust es_ES
dc.subject Fly ash es_ES
dc.subject Rice husk ash es_ES
dc.subject Mineral additions es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma13204634 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Baeza-Brotons, F.; Paya Bernabeu, JJ.; Galao, O.; Alberti, MG.; Garcés, P. (2020). Concrete for precast blocks: binary and ternary combination of sewage sludge ash with diverse mineral residue. Materials. 13(20):1-19. https://doi.org/10.3390/ma13204634 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma13204634 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 33080819 es_ES
dc.identifier.pmcid PMC7602948 es_ES
dc.relation.pasarela S\430892 es_ES
dc.description.references Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. doi:10.1016/j.buildenv.2010.12.002 es_ES
dc.description.references Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244-1256. doi:10.1016/j.cemconres.2010.12.001 es_ES
dc.description.references Ministerio de Agricultura Alimentación y Medio Ambiente http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/lodos-dep es_ES
dc.description.references Cyr, M., Coutand, M., & Clastres, P. (2007). Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cement and Concrete Research, 37(8), 1278-1289. doi:10.1016/j.cemconres.2007.04.003 es_ES
dc.description.references Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328-2340. doi:10.1016/j.wasman.2013.05.024 es_ES
dc.description.references Marble Association of Alicante http://www.marmoldealicante.es es_ES
dc.description.references Chen, M., Blanc, D., Gautier, M., Mehu, J., & Gourdon, R. (2013). Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management, 33(5), 1268-1275. doi:10.1016/j.wasman.2013.01.004 es_ES
dc.description.references Monzó, J., Payá, J., Borrachero, M. V., & Córcoles, A. (1996). Use of sewage sludge ash(SSA)-cement admixtures in mortars. Cement and Concrete Research, 26(9), 1389-1398. doi:10.1016/0008-8846(96)00119-6 es_ES
dc.description.references Payá, J., Monzó, J., Borrachero, M. V., Amahjour, F., Girbés, I., Velázquez, S., & Ordóñez, L. M. (2002). Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash. Journal of Chemical Technology & Biotechnology, 77(3), 331-335. doi:10.1002/jctb.583 es_ES
dc.description.references Tay, J.-H., & Show, K.-Y. (1994). Municipal wastewater sludge as cementitious and blended cement materials. Cement and Concrete Composites, 16(1), 39-48. doi:10.1016/0958-9465(94)90029-9 es_ES
dc.description.references Donatello, S., Tyrer, M., & Cheeseman, C. R. (2010). Comparison of test methods to assess pozzolanic activity. Cement and Concrete Composites, 32(2), 121-127. doi:10.1016/j.cemconcomp.2009.10.008 es_ES
dc.description.references Research Group in Chemistry Building Materials—Universitat Politècnica de València. Proyecto PEL-CEN http://epsar.cop.gva.es/depuradorasv es_ES
dc.description.references Peris Mora, E., Payá, J., & Monzó, J. (1993). Influence of different sized fractions of a fly ash on workability of mortars. Cement and Concrete Research, 23(4), 917-924. doi:10.1016/0008-8846(93)90045-b es_ES
dc.description.references Evolución de las resistencias mecánicas de sistemas ternarios cemento/ceniza volante/ceniza de lodo de depuradora: Efectos puzolánicos complementarios https://www.upv.es/pms2002/Comunicaciones/038 PAYA.PDF es_ES
dc.description.references Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113-117. doi:10.1016/j.conbuildmat.2009.08.013 es_ES
dc.description.references Influence of Marble and Limestone Dusts as Additives on Some Mechanical Properties of Concrete, SCI RES ESSAYS 2 (2007) 372-379 http://www.academicjournals.org/SRE es_ES
dc.description.references Aliabdo, A. A., Abd Elmoaty, A. E. M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41. doi:10.1016/j.conbuildmat.2013.09.005 es_ES
dc.description.references Rodríguez de Sensale, G. (2006). Strength development of concrete with rice-husk ash. Cement and Concrete Composites, 28(2), 158-160. doi:10.1016/j.cemconcomp.2005.09.005 es_ES
dc.description.references Khan, R., Jabbar, A., Ahmad, I., Khan, W., Khan, A. N., & Mirza, J. (2012). Reduction in environmental problems using rice-husk ash in concrete. Construction and Building Materials, 30, 360-365. doi:10.1016/j.conbuildmat.2011.11.028 es_ES
dc.description.references Madandoust, R., Ranjbar, M. M., Moghadam, H. A., & Mousavi, S. Y. (2011). Mechanical properties and durability assessment of rice husk ash concrete. Biosystems Engineering, 110(2), 144-152. doi:10.1016/j.biosystemseng.2011.07.009 es_ES
dc.description.references Nicoara, A. I., Stoica, A. E., Vrabec, M., Šmuc Rogan, N., Sturm, S., Ow-Yang, C., … Vasile, B. S. (2020). End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials, 13(8), 1954. doi:10.3390/ma13081954 es_ES
dc.description.references García Arenas, C., Marrero, M., Leiva, C., Solís-Guzmán, J., & Vilches Arenas, L. F. (2011). High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Management, 31(8), 1783-1789. doi:10.1016/j.wasman.2011.03.017 es_ES
dc.description.references Poon, C.-S., Kou, S., Wan, H., & Etxeberria, M. (2009). Properties of concrete blocks prepared with low grade recycled aggregates. Waste Management, 29(8), 2369-2377. doi:10.1016/j.wasman.2009.02.018 es_ES
dc.description.references Sabai, M. M., Cox, M. G. D. M., Mato, R. R., Egmond, E. L. C., & Lichtenberg, J. J. N. (2013). Concrete block production from construction and demolition waste in Tanzania. Resources, Conservation and Recycling, 72, 9-19. doi:10.1016/j.resconrec.2012.12.003 es_ES
dc.description.references Xiao, R., Ma, Y., Jiang, X., Zhang, M., Zhang, Y., Wang, Y., … He, Q. (2020). Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. Journal of Cleaner Production, 252, 119610. doi:10.1016/j.jclepro.2019.119610 es_ES
dc.description.references Xiao, R., Polaczyk, P., Zhang, M., Jiang, X., Zhang, Y., Huang, B., & Hu, W. (2020). Evaluation of Glass Powder-Based Geopolymer Stabilized Road Bases Containing Recycled Waste Glass Aggregate. Transportation Research Record: Journal of the Transportation Research Board, 2674(1), 22-32. doi:10.1177/0361198119898695 es_ES
dc.description.references Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579-1589. doi:10.1016/j.cemconres.2012.09.006 es_ES
dc.description.references Scrivener, K., Martirena, F., Bishnoi, S., & Maity, S. (2018). Calcined clay limestone cements (LC3). Cement and Concrete Research, 114, 49-56. doi:10.1016/j.cemconres.2017.08.017 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem